主题颜色

火力发电厂金属专业名词术语DL/T882—2004

【颁布单位】:国家发展和改革委员会

【发 文 号】:DL/T882—2004

【颁布日期】:2004年3月9日

【实施日期】:2004年6月1日

【标  题】:火力发电厂金属专业名词术语DL/T882—2004

前 言

本标准是根据原国家经贸委《关于确认1999年度电力行业标准制、修订计划项目的通知》(电力[2000]22)安排制定的。
随着火力发电厂金属监督工作标准化程度的日益增强,为便于各项标准的贯彻执行,便于开展技术培训和学术交流,迫切需要对火力发电厂金属专业名词术语进一步规范化,故提出制订“火力发电厂金属专业名词术语”行业标准。
本标准主要包括金属学基础术语、金属材料与加工、金属物理性能、金属力学性能、焊接与喷涂、热处理、金属的氧化与腐蚀、金属检验与分析技术等。制订本标准时,参照国内外标准,对相关名词术语进行了规范化。

本标准附录A、附录B为资料性附录。
本标准由中国电力企业联合会提出。
本标准由电力行业电站金属标准化技术委员会归口并解释。
本标准起草单位:国电热工研究院。
本标准主要起草人:李益民、王金瑞、刘树涛、范长信、史志刚。




火力发电厂金属专业名词术语


1 范 围

本标准规定了火力发电厂金属专业名词术语的定义。
本标准适用于与火力发电厂金属专业相关的技术标准和技术文件。


2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 228-2002 金属材料 室温拉伸试验方法
GB/T 229-1994 金属夏比缺口冲击试验方法
GB/T 230.1-2002 金属洛氏硬度试验 第1部分:试验方法
GB/T 230.2-2002 金属洛氏硬度试验 第2部分:硬度计的检验与校准
GB/T 230.3-2002 金属洛氏硬度试验 第3部分:标准硬度块的标定
GB/T 231.1-2002 金属布氏硬度试验 第1部分:试验方法
GB/T 231.2-2002 金属布氏硬度试验 第2部分:硬度计的检验与校准
GB/T 231.3-2002 金属布氏硬度试验 第3部分:标准硬度块的标定
GB/T 232-1999 金属材料 弯曲试验方法
GB/T 235-1999 金属材料 厚度等于或小于3mm薄板和薄带 反复弯曲试验方法
GB/T 239-1999 金属线材扭转试验方法
GB/T 242-1997 金属管 扩口试验方法
GB/T 244-1997 金属管 弯曲试验方法
GB/T 246-1997 金属管 压扁试验方法
GB/T 1818-1994 金属表面洛氏硬度试验方法
GB/T 2038-1991 金属材料延性断裂韧度JIc。试验方法
GB/T 2039-1997 金属拉伸蠕变及持久试验方法
GB/T 2107-1980 金属高温旋转弯曲疲劳试验方法
GB/T 2358-1994 金属材料裂纹尖端张开位移试验方法
GB/T 3075-1982 金属轴向疲劳试验方法
GB/T 4158-1984 金属艾氏冲击试验方法
GB/T 4161-1984 金属材料平面应变断裂韧度KIc试验方法
GB/T 4337-1984 金属旋转弯曲疲劳试验方法
GB/T 4338-1995 金属材料 高温拉伸试验
GB/T 4340.1-1999 金属维氏硬度试验 第1部分:试验方法
GB/T 4340.2-1999 金属维氏硬度试验 第2部分:硬度计的检验
GB/T 4340.3-1999 金属维氏硬度试验 第3部分:标准硬度块的标定
GB/T 4341-2001 金属肖氏硬度试验方法
GB/T 4342-1991 金属显微维氏硬度试验方法
GB/T 6398-2000 金属材料疲劳裂纹扩展速率试验方法
GB 6399-1994 金属材料轴向等幅低循环疲劳试验方法
GB/T 7314-1987 金属压缩试验方法
GB/T 8363-1987 铁素体钢落锤撕裂试验方法
GB/T 10120-1996 金属应力松弛试验方法
GB/T 10128-1988 金属室温扭转试验方法
GB/T 13298-1991 金属显微组织检验方法
GB/T 17394-1998 金属里氏硬度试验方法
DL/T 652—1998 金相复型技术工艺导则
DL/T 654—1998 火电厂超期服役机组寿命评估技术导则
DL/T 818—2002 低合金耐热钢碳化物相分析技术导则


3 一般术语

3.1 广义术语
3.1.1
金属学 metallurgy
金属学是一门关于金属与合金的科学,也称物理冶金。其主要内容是研究金属与合金的相结构、宏观组织和微观组织的实质及形成和变化规律,以及与化学成分和性能之间的关系。它是在原金相学的基础上结合物理化学、材料力学、热力学、晶体学,以及电子理论等学科而逐步发展起来的。
3.1.2
金相学 metallography
金相学是金属学赖以形成和发展的基础,也是金属学的重要组成部分。它是一门关于金属和合金的纯实验科学,其主要内容是研究金属与合金的宏观和微观组织的实质及其形成和变化规律,以及与化学成分和性能之间的关系。其主要研究方法是肉眼直观或借放大镜和显微镜,以及各种力学性能和物理性能测试手段进行实验,再加一定的理论分析。
3.1.3
金属物理学 metals physics
金属物理学是研究金属与合金的结构及其与性能关系的科学,即从电子、原子和各种晶体缺陷的运动规律和相互作用来阐明金属与合金的各种宏观规律。研究的主要内容有:
a) 金属电子论,即金属的电子结构与电学性能的理论;
b) 晶体缺陷理论,研究有关点缺陷(空位、间隙原子及其复合体等)、线缺陷(位错)和面缺陷
(层错、晶界和相界面)等的基本规律及对金属结构敏感性能的理论解释:
c) 合金相理论,研究合金相的结构和形成规律,预测各种相的稳定性;
d) 相变理论,研究各类相变的热力学和动力学。
3.1.4
金属力学 mechanics of metals
金属力学是研究金属在力的作用下所表现行为和发生现象的学科。由于作用力特点的不同,如力的种类(静态力、动态力、磨蚀力等),施力方式(速度、方向及大小的变化、局部或全面施力等),应力状态(简单应力、复杂应力)等的不同,以及金属在受力状态下所处环境的不同(温度、压力、介质、特殊空间等),使金属在受力后表现出各种不同的行为,显示出各种不同的力学性能。
3.2 火电厂金属术语
3.2.1
金属监督 metal supervision
金属监督是监督火力发电厂发电设备金属构件安全运行的技术和管理工作,是电力生产、建设中技术监督的重要组成部分。按照有关技术规程的规定,其内容包括:通过对受监范围内各种金属部件的检测和诊断,及时了解和掌握这些部件在制造、安装和检修中的材料质量、焊接质量等情况,杜绝不合格的金属构件投入运行;检查和掌握金属构件在服役过程中金属组织变化、性能变化及缺陷萌生发展,通过科学分析,使之在失效前及时更换或修补恢复;参加受监部件事故的调查和原因分析,总结经验,提出对策,并监督实施。
3.2.2
金属检验 metal inspection
金属检验是通过对部件金属材料进行各项物理性能、化学性能、力学性能测试及用无损的方法对金属部件的缺陷进行检测,对金属部件的材质作出评价。为设备的健康状况、可能发生故障或事故的概率及寿命损耗作出判断和评价的技术。金属检验是预防设备发生事故,指导和改进检修工作,保证安全运行的一种有效措施。
3.2.3
金属损伤 metal damage
金属材料长期在高温、应力作用下引起的微观组织老化和力学性能劣化的综合表现,金属损伤通常有蠕变损伤、疲劳损伤等。
3.2.4
关键部件 critical components
关键部件指发生事故时迫使机组产生持续的停运,危及人身安全,以及修理、更换费用高、时间长的部件。是进行机组寿命评估的主要对象。
3.2.5
一般金属部件或有影响部件 general components or influential components
一般金属部件或有影响部件指发生事故或故障时,可能导致机组的性能严重下降,出力降低或机组短时间的停运,但不会危及人身安全的部件。这类部件在损坏时,一般易作更换处理。
3.3 寿命评估与寿命管理
3.3.1
寿命管理 life management
寿命管理是以机组经济地实现其服役全寿命为目标,在对设备状态进行全寿命周期监测和评估的基础上,优化设备运行与维修管理的技术。通过对设备使用状态、老化状态和寿命的连续监测,及时正确地将状态和寿命评估的信息反馈给管理层,使之应用于设备管理的决策中,可提高设备运行的安全性、可靠性,降低维修成本,实现设备的全寿命过程优化管理,进一步改进维修决策与管理的科学性。
3.3.2
部件设计寿命 design life of components
设计者在设计参数下能够保证部件安全运行的最少小时数或疲劳循环次数。
3.3.3
安全运行寿命 safety - operating life
部件在正常运行条件下安全运行的时间,一般长于设计寿命。
3.3.4
剩余寿命 residual life
安全运行寿命减去迄今为止的实际运行寿命之差值。
3.3.5
寿命预测 life prediction
采用科学方法预测部件寿命的技术。主要依据部件的设计、制造、服役条件、运行历程、维修更换等资料;部件服役前和目前的材料的各项力学性能、微观组织老化程度,以及几何尺寸和缺陷状况;部件服役环境和危险部位的受力情况。然后采用合理的判据来预测部件寿命。
3.3.6
寿命在线监测 on-line monitoring of life
利用安全状态在线监测系统,对火力发电机组设备或部件进行寿命实时监测的技术。
3.3.7
缺陷评估 defects assessment
根据带缺陷部件材料的各项力学性能,特别是断裂韧性、微观组织,缺陷的性质、大小和分布,
以及缺陷所在部位的受力情况,用线弹性或弹塑性断裂力学的理论与方法,判断部件能否继续安全运行的评估方法。

4 金属学基础术语

4.1 金属晶体结构与组织
4.1.1
金属晶体结构 metalic crystal structure
金属晶体中原子的排列方式。常见的金属晶体结构有体心立方、面心立方及密排六方。
4.1.2
铁碳平衡图 iron-carbon equilibrium diagram
用温度为纵坐标、碳含量为横坐标的图解方法表示接近平衡条件或亚稳条件下,以铁、碳为组元组成的合金,在不同温度下所显示的相和相之间关系的图,也称铁碳相图。
4.1.3
相 phase
相指金属组织中化学成分、晶体结构和物理性能相同的组分。其中包括固溶体、金属化合物及纯物质(如石墨)。
4.1.4
母相 parent phase
由之转变为新相的原始相。
4.1.5
固溶体 solid solution
在固态下,一个组元溶解到另一组元中形成单一均匀的相称为固溶体。
4.1.6
α固溶体 alpha solid solution
在钢铁材料中,碳或合金元素溶解于α铁中形成的固溶体,或叫铁素体。
4.1.7
γ固溶体 gamma solid solution
在钢铁材料中,碳或合金元素溶解于γ铁中形成的固溶体,或叫奥氏体。
4.1.8
有序固溶体 ordering solid solution
在一定的条件下,固溶体溶质原子和溶剂原子相互间在点阵中呈有规则排列的固溶体。
4.1.9
合金固溶体 alloy solid solution
固态合金中由金属元素与金属元素或金属元素与非金属元素所组成,且具有一般金属通性的组成相。其主要特点是晶体结构仍保持着主组元(溶剂组元)的点阵特征,只是点阵常数可发生不同程度的改变。由两种元素组成者称为二元固溶体,由三种或三种以上元素组成者称为三元或多元固溶体。
4.1.10
中间相 intermediate phase
介于固溶体和化学化合物之间的相,在合金相图中其晶体结构不同于其组元,包括有间隙相、间隙化合物、电子化合物、正常价化合物等。
4.1.11
间隙相 interstitial phase
过渡族元素(M)与原子半径较小的元素(X),如C、N、B、H等所形成的一类金属化合物,属中间相。其形成主要取决于原子尺寸的大小。当原子半径比小于0.59时,形成具有简单结构的间隙相;当原子半径比大于0.59时,形成具有复杂结构的间隙相。问隙相大多具有明显的金属特性,其硬度和熔点较高,是应用很广的合金强化相。
4.1.12
间隙化合物 interstitial compound
由过渡族元素与C、N、B、H等原子半径较小的元素所组成的一类金属化合物。其原子半径比大
于0.59时,大多具有复杂结构,习惯上称为间隙化合物,属间隙相。
4.1.13
正常价化合物 normal valence compound
按原子价的正常规律而化合的化合物,属中间相。
4.1.14
电子化合物 electron compound
其结构的形成及其稳定性主要取决于电子浓度因素的金属间化合物,属中间相。
4.1.15
金属间化合物 intermetallic compound
金属与金属或金属与类金属之间形成的化合物相。其相结构主要取决于电负性、尺寸因素和电子浓度等。金属间化合物具有金属特性,有金属光泽、导电性和导热性等。
4.1.16
弥散相 dispersed phase
以细小颗粒的形式散布在合金组织基体中的第二相,是中间相或化合物。合金中的弥散相大多来自固溶体的脱溶。控制脱溶过程,可获得所希望的弥散相颗粒。一般说来,其颗粒越细、数量越多分布越均匀,强化作用越大。
4.1.17
σ相 sigma phase
拓扑密堆相之一,大多出现在过渡族金属所组成的合金系中,其分子式可用通式AB或AxBy来表示,其晶体属四方晶系。在不锈钢中曾发现有σ相,它会引起钢的脆化。
4.1.18
Laves 相 laves phase
当两组元合金元素的原子半径比为1.2:1时(分子式为AB2)形成的一种金属间化合物。在T91、
P91钢的晶界上发现有laves相,它会引起钢的脆化。
4.1.19
先析相 pro-eutectoid phase
固溶体发生共析转变前析出的固相。例如先析铁素体,先析碳化物等。
4.1.20
亚稳相 met stable phase
其稳定性介于不稳定相(失稳相)与稳定相(平衡相)之间的过渡相,如钢中的马氏体。
4.1.21
脱溶物 precipitare
过饱和固溶体中形成的溶质原子偏聚区(如铝铜合金中的GP区)或化学成分及晶体结构与之不同的析出相(如铝铜合金人工时效时形成的CuAl2)。
4.1.22
α铁 alpha iron
在921℃以下稳定存在,其晶体结构为体心立方的纯铁。
4.1.23
γ铁 gamma iron
在921℃~1390℃稳定存在,其晶体结构为面心立方的纯铁。
4.1.24
组织 structure
在显微镜下做金相检验时,具有共同的特征、相同的组成部分叫组织或组织组成体。一种组织可由单相组成,如铁素体;也可由多相组成,如珠光体。
4.1.25
宏观组织 macrostructure
金属试样的磨面经适当处理后,用肉眼或借助放大镜观察到的组织,又称低倍组织。
4.1.26
亚组织 substructure
只有借助电子显微镜才能观察到的组织结构称为亚组织,亦称亚结构。例如位错、层错、微细孪晶、亚晶粒等。

4.1.27
位错 dislocation
金属材料由于结晶或受切应力等因素的影响,造成晶体点阵中质点的排列偏离理想状态而产生的错误排列,通常有刃型位错和螺型位错。是晶体中常见的一维缺陷(线缺陷),在透射电子显微镜下金属薄膜试样的衍衬象中表现为弯曲的线条。
4.1.28
层错 stacking fault
面心立方、密排六方、体心立方等常见金属晶体中密排晶面堆垛层次局部发生错误而形成的二维晶体学缺陷(面缺陷)。在透射电子显微镜下金属薄膜试样的衍衬像中表现为若干平直干涉条纹组成的带。
4.1.29
位错塞积 dislocation pile up
滑动中的位错列在领先位错受阻时形成塞积的现象。在透射电子显微镜下金属薄膜试样的衍衬像中表现为接近平行排列的短弧线。
4.1.30
空位 vacancy
晶体结构中原子空缺的位置。属于零维晶体学缺陷。
4.1.31
织构 texture
多晶体材料当变形度大时,其中多数晶粒的滑移系最终基本上朝向统一方向,这就使原来位向较乱的多晶体出现择优取向,诸晶粒晶体学位向接近一致的组织。
4.1.32
晶粒 grain
多晶体材料内以晶界分开、晶体学位向基本相同的小晶体。
4.1.33
亚晶粒 subgrain
晶粒内相互间晶体学位向差很小(<30)的小晶块。
4.1.34
亚晶界 subgrain boundary
亚晶粒之间的界面称为亚晶界。
4.1.35
晶界 grain boundary
多晶体材料中相邻晶粒的界面。相邻晶粒晶体学位向差小于100的晶界称为小角晶界;相邻晶粒晶体学位向差较大的晶界称为大角晶界。
4.1.36
相界面 interphase boundary
相邻两种相的分界面。两相的点阵在跨越界面处完全匹配者称为共格界面,部分匹配者称为半共格界面,基本不匹配者称为非共格界面。
4.1.37
单晶 single crystal
由一个晶核生长而形成的晶体。其特点是其内部各处的晶体学取向可保持一致性。但其外形既可以是规则的多面体,也可以是无规则的任意形状。
4.1.38
多晶 polycrystal
由两个以上的同种或异种单晶组成的结晶物质。各单晶的晶体学取向大多具有任意性。已无晶体所具有的各向异性特征。
4.1.39
晶粒度 grain size
晶粒度指多晶体内晶粒的大小。可用晶粒号、晶粒平均直径、单位面积或单位体积内的晶粒数目定量表征。由美国材料试验协会(ASTM)制定的、并被世界各国采用的一种表示晶粒大小的方法为:
晶粒号(N)与放大100倍的视野上每平方英寸面积内的晶粒数(n)之间的关系为n=2H-1。实际检验时,一般采用放大100倍的组织与标准晶粒号图片对比的方法判定。
4.1.40
实际晶粒度 praeficai grain size
表示钢铁材料交货状态下的实际晶粒大小,以及经不同热处理后钢或零件所得到的实际晶粒大小。
4.1.41
本质晶粒度 elmentary grain size
根据标准试验方法,钢在930℃±1O℃保温足够时间(3h~8h)后所得到的奥氏体晶粒度。它表示钢在一定条件下晶粒长大的倾向。
4.1.42
奥氏体 austenite
碳原子溶于面心立方晶格γ-Fe中所形成的间隙固溶体。用符号γ或A表示。在合金钢中除碳原子外,溶于γ-Fe的还有合金元素原子。碳在γ-Fe中的最大溶解度为2.11%(wt)。奥氏体具有顺磁性,导热性能差,线胀系数高,塑性好、但硬度和强度都不高等特点。
4.1.43
过冷奥氏体 super-cooled austenite
钢中被过冷至奥氏体转变临界点以下的奥氏体(过冷相)。
4.1.44
残留奥氏体 retained austenite
工件淬火冷却至室温后残留的奥氏体,也叫残余奥氏体或残存奥氏体。
4.1.45
铁素体 ferrite
碳原子溶于体心立方α- Fe中所形成的间隙固溶体。用符号α或F表示。碳溶于δ-Fe形成的固溶体叫δ固溶体,用符号δ表示,也是铁素体。碳在铁素体中的最大溶解度为0.09%(wt)(1495℃时)。723℃时,碳在α-Fe中的溶解度为0.02%(wt)。铁素体是低、中碳钢和低合金钢的一种显微组织。按钢的成分和形成条件的不同,其形态可为等轴状、块状、网状或针状。一般随钢中铁素体含量的增加,钢的塑性和韧性提高,强度下降。
4.1.46
渗碳体 cementite
晶体结构属正交系,化学式为Fe3C的金属化合物,是钢和铁中常见的固相。在合金钢中为合金渗碳体,用符号C表示。渗碳体中含碳量为6.69%(wt),熔点为1227℃,其性质硬而脆,塑性和冲击韧性近于零。

4.1.47
珠光体 pearlite
珠光体是由铁素体和渗碳体所组成的机械混合物,通常呈片层状相间分布。片层间距和片层厚度主要取决于奥氏体分解时的过冷度。按片层间距的大小,又可将珠光体分为粗珠光体、细珠光体和极细珠光体三类。这种组织经抛光与腐蚀后在光学显微镜下观察很像指纹并有珍珠光泽,故称珠光体,用符号P表示。珠光体的性能介于铁素体和渗碳体之间,并取决于珠光体的分散程度,片层越薄,其硬度和强度越高。
4.1.48
粒状珠光体羽 obular pearlite
碳化物呈球粒状弥散分布于铁素体基体中的珠光体,又称球状珠光体。
4.1.49
索氏体 sorbite
过冷奥氏体在600℃~650℃左右分解所形成的珠光体,其片层较薄(3×102nm~4×102nm),片
间距约为80nm~150nm,需用600倍以上的光学金相显微镜才能分辨的组织,又称细珠光体,用符号S或C表示。
4.1.50
回火索氏体 tempered sorbite
淬火马氏体经高温回火(500℃~650℃)后,碳化物已聚集球化并弥散在基体中起强化作用,而
基体已发生了回复和再结晶,这种组织叫回火索氏体,又称二次索氏体。
4.1.51
屈氏体 troosite
过冷奥氏体在650℃~550℃左右分解所形成的珠光体,片层极薄(1×102nm~2×102nm),片间
距约为30nm~80nm,用放大1000倍的光镜也难于分辨,一般在电镜下才能分辨的组织,又称极细珠光体,用符号T表示。
4.1.52
回火屈氏体 tempered troosite
淬火马氏体经中温回火(300℃~500℃)后,马氏体中过饱和的碳大部或全部脱溶,析出的碳化
物开始聚集长大和球化,基体马氏体已开始回复,这种组织叫屈氏体,又称二次屈氏体。
4.1.53
贝氏体 bainite
钢铁奥氏体化后,过冷到珠光体转变温度区与Ms之间的中温区等温,或连续冷却通过这个中温区时所形成的组织,又称贝茵体,其组织由过饱和α固溶体和碳化物组成。按其形态可分为上贝氏体、下贝氏体和粒状贝氏体三种。
4.1.54
上贝氏体 upper bainite
上贝氏体又称为羽毛状贝氏体。在较高温度区域内形成的贝氏体。其典型形态是以大致平行、碳轻微过饱和的铁素体板条为主体,短棒状或短片状碳化物分布于板条之间。在含硅、铝的合金钢中碳化物全部或部分被残留奥氏体所取代,在光学显微镜下观察时呈羽毛状。由于铁素体内位错密度高,故上贝氏体强度高、韧性差,是生产上不希望得到的组织。

4.1.55
下贝氏体 lower bainite
在接近马氏体转变温度区域内形成的贝氏体。其主体是双凸透镜片状碳过饱和铁素体,片中分布着与片的纵向轴呈550~650角平行排列的碳化物。下贝氏体强度高、塑性适中,韧性和耐磨性好。
4.1.56
粒状贝氏体 granular bainite
在贝氏体的高温区域形成,粒状贝氏体不是或不完全是共格切变形核,光学显微镜下在大块铁素体内似乎又包含一些碳化物和一些不规则的小岛状组织,X射线衍射时或薄膜电子衍射时证实,这些小岛状组织为残余奥氏体。
4.1.57
马氏体 martensite
钢铁或非铁金属中通过无扩散共格切变型转变(马氏体转变)所形成的产物。钢铁中马氏体转变
的母相是奥氏体,而转变所得到的新相成分与原奥氏体成分完全相同。晶体结构为体心正方,可被看作是碳与合金元素过饱和α固溶体。用符号M表示。其主要形态是板条状和片状。它处于亚稳状态,有转变为稳定状态的趋向。马氏体是淬火钢的基本组织。
4.1.58
回火马氏体 tempered martensite
淬火状态的马氏体在低温回火(150℃~250℃)的分解产物。
4.1.59
二次马氏体 secondary martensite
工件回火冷却过程中残留奥氏体发生转变形成的马氏体。
4.1.60
马氏体相变点 martenitic transformation point
马氏体相变点指马氏体相变开始点,用M2表示。系指奥氏体和马氏体的两相自由能之差达到相变所需的最小趋动值时的温度。
4.1.61
魏氏组织 widmanstatten structure
组织组分之一呈片状或针状沿母相的特定晶面析出的显微组织。当钢在热加工、正火、或退火热处理时,由于过热而使钢的奥氏体晶粒比较粗大,且冷却速度适当时,就容易形成魏氏组织。钢中一旦出现魏氏组织,其冲击韧性和塑性将下降很多。
4.1.62
莱氏体 ledeburite
铸铁或高碳高合金钢中由奥氏体(或其转变的产物)与碳化物(包括渗碳体)组成的共晶组织。
共析温度以上由奥氏体和碳化物组成的共晶组织称为高温莱氏体;共析温度以下由珠光体和碳化物组成的共晶组织称为低温莱氏体。莱氏体性质硬而脆。
4.1.63
共晶组织 eutectic structure
金属凝固时,由液相同时析出紧密相邻的两种或多种固相构成的铸态组织。
4.1.64
共析组织 eutectoid structure
固态金属自高温冷却时,从同一母相中同时析出紧密相邻的两种或多种不同相构成的组织。
4.1.65
枝晶组织 dendritic structure
钢铸锭或金属铸件中呈树枝状的晶体(晶粒)。
4.1.66
带状组织 banded structure
金属材料中两种组织组分呈条带状沿热变形方向大致平行交替排列的组织。例如钢材中的铁素体带-珠光体带,珠光体带-渗碳体带等。
4.1.67
针状组织 acicular structure
含有一种或多种针状相的组织。
4.1.68
片层状组织 lamellar structure
两种或多种薄层状相交替重叠形成的共晶组织、共析组织及其他组织。
4.1.69
碳化物 carbide
钢中碳与一种或数种其他金属元素构成的金属化合物的总称。碳化物按其晶体结构特点应归属于间隙相,是铁碳合金中重要组成相之一。
4.1.70
ε碳化物 ε-carbide
密排六方结构,化学式为Fe2-4C的过渡型碳化物。
4.1.71
网状碳化物 carbide network
过剩碳化物在晶粒边界上析出呈网络状分布的碳化物。
4.1.72
带状碳化物 banded carbide
钢锭中的结晶偏析在热加工变形过程中延伸而形成的碳化物富集带。
4.1.73
石墨 graphite
碳的一种同素异构体,晶体结构属于六方晶系,是铸铁中常出现的固相。其空间形态有片状、球状、团絮状、蠕虫状等。
4.2 金属的强化
4.2.1
金属强化 strengthening 0f metal
通过合金化、塑性变形和热处理等手段提高金属材料强度的工艺方法。金属强化是一个综合概念,即在提高强度的同时也必须同时注意金属材料的塑性与韧性。强化金属材料的方法很多,主要有形变强化、固溶强化、沉淀强化(弥散强化)和晶界强化等。
4.2.2
形变强化 strain strengthening
通过增加金属材料塑性变形量来提高金属室温强度(如屈服强度)的工艺,或称加工硬化。这种强化方法仅使用于工作温度为室温或不超过200℃的部件。

4.2.3
固溶强化 solution strengthening
向钢或合金中加入合金元素使之溶入作为基体的固溶体,从而使钢或合金强度得以提高的方法。如火电厂用奥氏体耐热钢中加入Mo、W、Nb等元素,以及珠光体耐热钢中加入Cr、Mo、V等元素,可使钢的强度提高。
4.2.4
沉淀强化 precipitation strengthening
过饱和固溶体在长期保温过程中发生时效,析出弥散分布的碳化物、氮化物或金属间化合物的小质点,阻止了位错运动,从而提高钢和合金的室温抗拉强度、蠕变极限和持久强度等的方法。
在沉淀过程中,当沉淀出的第二相与基体之间产生共格,这种强化也叫时效强化或脱溶强化;当共格关系破坏后,弥散的第二相质点分布在基体上造成的强化,称之为弥散强化。
4.2.5
晶界强化 grain-boundary strengthening
向钢中加入一些微量的表面活性元素,如硼和稀土元素等,产生内吸附现象浓集于晶界,从而使钢的蠕变极限和持久强度显著提高的方法。如珠光体耐热钢12Cr2MoWVB,即利用硼的晶界强化作用,提高了钢的蠕变极限和持久强度。细化晶粒也是一种晶界强化的手段。
4.2.6
马氏体强化 martensite strengthening
钢经淬火而得到马氏体使金属材料强化。
4.2.7
冶金强化 metallurgic strengthening
通过钢的冶炼工艺的改善以提高钢的强度和韧性。
4.3 金属组织稳定性
4.3.1
珠光体球化 spheroidization of pearlite
钢中片层状珠光体组织,在高温长期应力作用下,珠光体中的片层状渗碳体(或碳化物),通过原子扩散方式逐渐变为球状,并随时间的延长不断聚集长大的现象。20钢、15CrMo和12CrlMoV钢等在高温下长期运行均有产生珠光体球化的倾向。
4.3.2
石墨化 graphitization
钢中的渗碳体分解成为游离碳,并以石墨形式析出,在钢中形成石墨夹杂,使钢的脆性急剧增大的现象。火力发电厂用低碳钢和不含铬的低碳钼钢(如0.5%Mo钢)等,在高温长期运行过程中均有石墨化倾向。
4.3.3
合金元素迁移 alloy elements migration
在高温长期运行过程中,金属材料中合金元素随时间由一种组织组成物向另一种组织组成物转移(既包括合金元素含量的变化,也包括碳化物数量、结构类型和分布形态的变化)的现象,又称合金元素再分配。
4.4 金属的脆性

4.4.1
冷脆性 cold brittleness
金属在低温下呈现的脆性。冷脆性只产生在具有体心立方晶格(如铁等)的金属中。火力发电厂
锅炉用碳钢和低合金钢都有冷脆现象。
4.4.2
热脆性 hot brittleness
某些钢材长时间停留在400℃~550℃区间,在冷却到室温后其冲击值显著下降的现象。差不多所有的钢都有产生热脆性的倾向。
4.4.3
回火脆性 tempering brittleness
淬火钢在某一温度区域回火时,其冲击韧性会比其在较低温度回火时反而下降,而临界冷脆转变温度提高的现象。可分为第一类和第二类回火脆性两种。
4.4.4
第一类 回火脆性 first sort tempering brittleness
合金钢淬火后于250℃~400℃范围回火后产生的回火脆性,呈晶间型断裂特征,且不能用重新加热的方法消除,故又称为不可逆回火脆性。主要产生在合金结构钢中。
4.4.5
第二类 回火脆性 second sort tempering brittleness
合金钢淬火后于500℃~550℃范围回火后或从600℃以上回火缓冷通过500℃~550℃后产生的回火脆性,主要产生在铬钢、锰钢及镍铬钢中。重新加热到600℃以上快速冷却可以消除此类回火脆性。
4.4.6
应变时效脆性 strain-age brittleness
某些钢在冷加工变形后,在室温下经过较长时间或在100℃~300℃下经过一定时间后,强度上升而冲击值下降的现象。主要产生在含碳量较低的钢中。
4.4.7
蠕变脆性 creep embrittlement
由于蠕变而导致金属材料持久塑性降低、持久缺口敏感性增加,以及在蠕变过程中发生的低应力蠕变脆性断裂的现象。蠕变脆性断裂时无明显的塑性变形,且呈晶间型断裂特征。
4.5 金属缺陷
4.5.1
表面缺陷 surface defect
在金属加工、储存或使用期间产生的缺陷,如凹坑、划痕、麻点、折叠、裂纹、腐蚀抗、磨蚀等。
4.5.2
凹坑 recession
指周期性或无规律的分布在金属成材表面的凹陷。
4.5.3
缩孔 shrinkage hole
铸件、焊缝等在凝固时,由于不均匀收缩所引起的凹缺陷。

4.5.4
划痕 scoring
由于外来物移动,划掉或挤压工件表层材料而形成的连续凹凸状缺陷。
4.5.5
滑痕 skidding
由于间断性过载在金属部件表面上个别区域出现,如球轴承、滚柱轴承和轴承座圈上所形成的银雾状表面损伤。
4.5.6
磨蚀 erosion
由于物理性破坏或磨损而造成的表面损伤。
4.5.7
麻点 pitting
麻点指金属成材表面上大面积分布,往往是深的凹点状和小孔状缺陷。
4.5.8
折叠 lap
微小厚度的舌状隆起,一般呈皱纹状,是滚压或锻压时材料被褶皱压向表层所形成。
4.5.9
夹层 laminate
钢板轧制时,由于钢锭中存在气泡、大块的非金属夹杂物和未完全切除的残余缩孔而引起的与钢板表面平行或基本平行的钢板分层,亦称离层。
4.5.10
发纹 hairline crack,micro-flaw
沿钢坯或钢材的轴向裂开的细长的裂纹。一般通过塔形试验检查可发现,在横断面上是黑色极小的点子,在纵断面上是发纹。
4.5.11
裂纹 crack
金属成材表面、棱角处或内部呈现连续或断续的开裂,一般呈直线状,有时呈“Y”型。
4.5.12
白点 fish eyes
钢材组织内部存在的细小发纹。在平行于钢材压延方向的断口上表面为椭圆形银色白斑。亦称鱼眼或鳞片,白点的本质是氢脆。
4.5.13
疏松 porosity
由于金属液态收缩或凝固收缩,在铸件最后凝固区域出现的多孔区。在铸件横截面上呈现出密集或分散分布的微细孔隙,孔隙多呈不规则的多边形或圆形。
4.5.14
偏析 segregation
钢中化学成分或杂质分布不均匀而集聚在某一区域的现象。
4.5.15
脱碳 decarburization
钢或铸铁工件在高温加热及保温时,因所含Fe3C或石墨与介质中的O2、C02、H20、H2等化合而使表面含碳量降低的现象。
4.5.16
过热 overheating
由于加热温度过高,致使金属晶粒过分长大,从而导致其力学性能显著降低的现象。
4.5.17
过烧 burning
金属或合金的加热温度接近状态图的液相线温度时,晶界发生氧化或部分熔化的现象,通常首先发生在晶界处。
4.5.18
蠕变孔洞 creep cavity
高温金属部件长期运行过程中,在温度和应力作用下,优先在与外加应力垂直的晶界上产生的圆形或椭圆形的孔洞,进而可发展成蠕变裂纹。


5 金属材料与加工

5.1 铁
5.1.1
生铁 pig iron
含碳量大于2.11%的铁-碳合金,常用生铁含碳量为2.5%~4.5%的铁-碳合金,此外还含有Si、Mn、P、S等杂质。生铁性脆,无塑性,主要用于炼钢,亦可铸造。
5.1.2
纯铁 pure iron
从理论上讲纯铁是不含碳及其他任何杂质的铁。其原子量为55.85,密度7.87g/cm3,熔点1538℃,室温下具有体心立方晶格的α铁。
5.1.3
工业纯铁 Armco-iron
含碳量不超过0.04%的纯铁,亦称锭铁。
5.1.4
铁合金 ferroalloy
含铁及一定数量其他元素的合金。这些元素大部分是金属,但也包括一些半金属(如Si、B)和非金属(如P),是炼钢的主要原料,作为钢的脱氧剂和合金元素添加剂加入钢中。
5.1.5
铸铁 cast iron
碳含量大于2%的铁-碳-硅合金的统称。此外还含有少量锰、磷、硫和其他微量元素。根据碳在铸铁中的主要存在形式、形状和形成过程,可分为灰口铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁、白口铸铁五大类。
5.1.6
灰口铸铁 gray cast iron
断口呈暗灰色,石墨主要以片状形式出现的铸铁。一般含C2.5%~4.0%,Si 1.0%~3.0%,Mn0.2%~1.O%,P 0.02%~1.O%,S 0.02%~0.25%。

5.1.7
球墨铸铁 spheroidizing graphite iron;ductile iron;nodular iron
加入球化剂和孕育剂处理,石墨主要以球状出现的铸铁。依其基体组织的不同,可分为铁素体球墨铸铁、珠光体球墨铸铁、贝氏体球墨铸铁三大类。
5.1.8
蠕墨铸铁 compacted graphite iron;vermicular graphite iron
石墨形态介于球状石墨和片状石墨之间的铸铁。
5.1.9
可锻铸铁 malleable cast iron;malleable iron
铸态为白口组织,经过石墨化退火或脱碳退火使碳呈团絮状析出的铸铁。也叫展性铸铁或韧性铸铁。
5.1.10
白口铁 white cast iron
在凝固过程中没有石墨析出,铸态断口呈白色的铸铁。通常含C 1.8%~6%,Si 0.5%~1.9%,Mn 0.25%~0.8%,S 0.06%~0.2%,P 0.06%~O.2%。其余为Fe。
5.2 钢
5.2.1
铸钢 cast steel
碳含量低于2%的铸造铁一碳—硅合金的总称。按合金元素的含量可分为碳素铸钢,低合金铸钢,中合金铸钢和高合金铸钢;按组织可分为珠光体铸钢,铁素体铸钢和马氏体铸钢;按用途可分为耐热铸钢,耐蚀铸钢,无磁铸钢,模具用铸钢和特殊用途铸钢等。
5.2.2
沸腾钢 rimmed steel
不用硅或铝脱氧,未经过镇静处理而直接浇注成钢锭的碳素钢。由于钢水凝固时生成的一氧化碳(CO)气体逸出,在钢锭模内产生沸腾现象。只用于含碳量低于0.25%的低碳钢。
5.2.3
镇静钢 killed steel
浇注前向钢水中加入足够数量的强脱氧剂(如Si、Al等)而制成的钢。钢水在钢锭模内凝固时不
产生一氧化碳(C0)气体,所以钢水保持平静而不沸腾,故名镇静钢。含碳量约在0.25%以上的碳钢
及合金钢几乎全是镇静钢。
5.2.4
半镇静钢 semi-killed steel
钢的脱氧程度介于镇静钢和沸腾钢之间,即浇注前经过中等程度脱氧处理,使钢水在凝固过程中保持一定沸腾的钢。半镇静钢一般也都是含碳量低于0.25%的钢。
5.2.5
平炉钢 open-hearth steel
使用酸性平炉或碱性平炉冶炼的钢。
5.2.6
转炉钢 converter steel
用转炉冶炼的钢。可分为酸性和碱性转炉钢,还可分为底吹、侧吹、顶吹转炉钢以及空气吹炼和纯氧吹炼转炉钢。转炉钢主要有普通碳素钢、优质碳素钢及部分合金钢。
5.2.7
电炉钢 electric furnace steel
用电为能源的炼钢炉生产的钢。电炉种类很多,有电弧炉、感应电炉、电渣炉、电子束炉、自耗电弧炉等。电炉钢多为优质碳素结构钢、工具钢及合金钢。
5.2.8
普通钢 plain carbon steel
与优质钢相比,硫、磷等杂质及微量残存元素含量较高的碳素钢。普通钢即碳素结构钢。
5.2.9
优质钢 high-quality steel
杂质含量少,特别是硫、磷含量较少,品质和性能优良的钢。优质碳素结构钢硫和磷含量的上限为0.040%,有时还要低。优质碳素工具钢硫含量不大于0.030%,磷含量不大于0.035%,而高级优质碳素工具钢分别规定为不大于0.020%和0.030%。优质碳素钢一般都要经过热处理后使用。
5.2.10
调质钢 quenched and tempered steel
淬火成马氏体后在500℃~650℃之间的温度范围内回火的调质处理用钢。经调质处理后,钢的强度、塑性及韧性有良好的配合。其化学成分是含碳量为0.25%~0.5%的碳素钢或低合金钢和中合金钢,调质处理后的金相组织为回火索氏体。
5.2.11
正火钢 normalized steel
为了细化晶粒,提高钢的强度而经过正火热处理的钢。
5.2.12
共析钢 eutectoid steel
具有共析成分(0.77%C)的碳素钢。该钢由高温降至723℃时奥氏体发生转变,生成铁素体和渗碳体的机械混合物——珠光体。
5.2.13
亚共析钢 hypo-eutectoid steel
含碳量低于0.77%的碳素钢,其显微组织为铁素体和珠光体。先共析铁素体的含量随钢中碳含量的增加而减少,而珠光体的含量则随碳含量的增加而增加。
5.2.14
过共析钢 hyper-eutectoid steel
含碳量高于0.77%的碳素钢,其显微组织除片状珠光体外,还有先析渗碳体。这种渗碳体沿原奥氏体晶界呈网状分布。
5.2.15
碳素钢 carbon steel
含碳量为0.02%~2.11%的铁碳合金,也称为碳素钢。在钢中不含有意加入的其他合金元素,但总会含有硅、锰、磷、硫、氧等少量杂质元素。按含碳量可分为低碳钢、中碳钢、高碳钢;按组织可分为共析钢、亚共析钢、过共析钢;按质量可分为普通钢、优质钢、高级优质钢、特级优质钢;按硬度可分为极软钢、软钢、半软钢、半硬钢、硬钢、最硬钢;按用途可分为结构钢、工具钢、特殊性能钢等。碳素钢是用途最广、用量最大的金属材料。


5.2.16
高碳钢 high-carbon steel
含碳量大于0.6%的碳素钢,常用含碳量为0.60%~1.50%,除碳外还可含有少量锰(0.70%~
1.20%)。高碳钢都属于优质碳素钢或高级优质碳素钢。
5.2.17
中碳钢 medium-carbon steel
含碳量为0.25%~0.60%的碳素钢。有镇静钢、半镇静钢、沸腾钢等多种产品。除碳外还可含有少量锰(0.70%~1.20%)属结构钢。按质量可分为普通碳素结构钢和优质碳素结构钢。
5.2.18
低碳钢 low-carbon steel
含碳量小于0.25%的碳素钢。有时还含有少量锰(O.70%~1.00%),属结构钢。按质量又可分为普通钢和优质钢,前者磷和硫的含量分别不大于0.045%和0.050%,后者分别不大于0.035%~0.040%和0.030%~0.040%。
5.2.19
碳素结构钢 carbon structural steel
碳素结构钢是碳素钢的一种。含碳量约为0.05%~0.70%,个别可高达0.90%。可分为普通碳素结构钢和优质碳素结构钢两类。
5.2.20
碳素工具钢 carbon tool steel
碳素工具钢是碳素钢的一种。含碳量为0.65%~1.35%,根据硫、磷杂质的含量可分为优质碳素工具钢(硫≤0.030%,磷≤0.035%)和高级优质碳素工具钢(牌号后加“A”,硫≤0.020%,磷≤0.030%)。
5.2.21
莱氏体钢 ledeburitic steel
含有莱氏体共晶组织的钢。含碳4.3%的铁-碳合金熔化后,自高温缓慢冷却下来时,在1147℃发生共晶转变,即由液态生成共晶组织(奥氏体和渗碳体的混合物),在723℃奥氏体转变为珠光体,室温下为渗碳体加珠光体组织。
5.2.22
合金钢 alloy steel
为改善钢的使用性能和工艺性能,在碳素钢的基础上,加入适量合金元素的铁碳合金。按所含合金化元素总量的多少可分为低合金钢、中合金钢、高合金钢。按用途可分为合金结构钢、合金工具钢和特殊用途合金钢。按所含合金元素种类可分为铬钢、锰钢、硅钢、镍钢、铬钼钢、镍铬钢和钼钢等。按正火状态下金相组织可分为珠光体钢、贝氏体钢、奥氏体钢、马氏体钢等。
5.2.23
低合金钢 low-alloy steel
在碳素钢基础上,含有一定量的硅或锰合金元素以及少量其他合金元素,合金元素总含量小于5%的合金钢。亦可称为普通低合金钢。
5.2.24
中合金钢 medium-alloy steel
合金元素总含量为5%~10%的合金钢。
5.2.25
  高合金钢high-alloysteel
  合金元素总含量为超过10%的合金钢。
  5.2.26
  合金结构钢structuralalloysteel
  用作机械零件和各种工程构件并含有一种或数种一定量合金元素的钢。可分为普通合金结构钢和特殊用途合金结构钢。普通合金结构钢包括低合金高强度钢、低温用钢、超高强度钢、渗碳钢、调质钢和非调质钢。特殊用途合金结构钢包括弹簧钢、滚珠轴承钢、易切削钢和冷冲压钢等。
  5.2.27
  合金工具钢alloytoolsteel
  在碳素工具钢中加入硅、锰、镍、铬、钨、钼、钒等合金元素的钢。与碳素工具钢相比,由于加入合金元素,钢的淬透性和抗回火性得到改善。
  5.2.28
  低合金高强度钢highstrengthlowalloysteel
  在低碳钢中利用添加少量合金化元素使钢在轧制状态或正火状态的屈服强度超过275MPa的一类合金钢。
  5.2.29
  耐热钢heatresistantsteel
  在高温下既有足够的强度,良好的抗氧化性和抗腐蚀性,又有长期组织稳定性的钢的总称。主要是一些加入了铬、硅、铝、钼、钒、钨、铌、钛、硼及稀土等合金元素的合金钢。
  5.2.30
  珠光体耐热钢pearliticheat-resistantsteel
  正火后的组织为铁素体加珠光体(包括部分贝氏体组织)的耐热钢,也称珠光体热强钢。钢中合
  金元素总含量在5%以下,如15CrMo、12CrlMoV、12Cr2Mo等。
  5.2.31
  奥氏体耐热钢austeniticheat-resistantsteel
  利用弥散分布的、高温时不易聚集长大的碳化物或金属间化合物使钢强化,常温下其显微组织为奥氏体组织或只含少量铁素体的奥氏体一铁素体复相组织的耐热钢。其合金元素总含量一般在50%以下,主要为铬、镍和在铬、镍基础上加入钨、铝、铌、钛等强化元素的钢,另外还有铬锰氮、铬镍锰及铁铝锰系奥氏体耐热钢等。
  5.2.32
  马氏体耐热钢martensiticheatresistantsteel
  正火后得到马氏体或马氏体加贝氏体(包括少量铁素体)组织的耐热钢。它是以含铬12%~13%
  和加有强化元素钨、铝、钒等,以及含铬9%和加入钼、铌、铝、氮等钢为主。
  5.2.33
  铁素体耐热钢ferriticheat-resistantsteel
  在常温下呈铁素体组织且在高温下不发生奥氏体转变的耐热钢。这类钢常含有较多的铁素体形成元素,如铬、硅、铝等。含铬量一般在13%~27%之间。
  5.2.34
  不锈钢stainlesssteel
  具有抵抗大气、酸、碱、盐等腐蚀作用的合金钢的总称。
  5.2.35
  铁素体不锈钢ferriticstainlesssteel
  铬含量一般在12%~30%,金属组织为铁素体相(体心立方晶格)的铁基合金。这类钢一般不含
  镍或含很少量的镍。
  5.2.36
  奥氏体不锈钢austenlticstainlesssteel
  在常温下具有奥氏体相(面心立方晶格)组织的不锈钢。根据所含合金元素可分为铬-镍系奥氏体不锈钢,铬-镍-锰系奥氏体不锈钢和铁-锰-铝系奥氏体不锈钢等。
  5.2.37
  马氏体不锈钢martensiticstainlesssteel
  铬含量不低于12%(一般在12%~18%之间)并具有马氏体相组织的高铬钢。
  5.2.38
  耐酸钢acidresistantsteel
  在各种侵蚀性较强的酸性介质中耐腐蚀的钢。通常把不锈钢和耐酸钢统称为不锈耐酸钢,有时简称为不锈钢。
  5.2.39
  抗氧化钢oxidation-resistantsteel;scale-resistantsteel
  在高温环境中工作时具有高温抗氧化能力的一类合金钢,也叫耐热不起皮钢和高温不起皮钢一
  般包括铁素体类和奥氏体类两类。
  5.2.40
  耐磨钢abrasion-resistantsteel;wear-resistantsteel
  在各种受力状态下和不同环境下,具有高度耐磨损的钢种。如高锰钢、轴承钢、低合金高强度钢等。
  5.2.41
  低温钢cryogenicsteel
  在-1O℃以下的低温能保证缺口韧性的钢。
  5.2.42
  耐热合金heat-resistantalloy
  使用温度在600℃以上,具有良好热稳定性和热强性的合金。
  5.2.43
  耐蚀合金corrosionresistantalloy
  在各类腐蚀或腐蚀与力学因素并存的环境中表现出较好抵抗能力的合金。
  5.3金属加工
  5.3.1
  铸造casting;foundry
  将熔融金属浇注、压射或吸入铸型型腔,凝固后获得一定形状和性能铸件的成形工艺。
  5.3.2
  热压力加工hot-pressedwork
  金属在再结晶温度以上进行的压力加工。例如:热轧、热锻等。
  5.3.3
  冷压力加工cold-pressedwork
  金属在再结晶温度以下进行的压力加工。例如:冷轧、冷拔等。
  5.3.4
  轧制rolling
  金属材料通过具有旋转轧辊的轧机进行塑性加工的过程。按轧制时金属是否立即产生软化(回复和再结晶)可分为热轧和冷轧。
  5.3.5
  热轧hotrolling
  在材料回复和再结晶温度以上进行的轧制过程。
  5.3.6
  冷扎coldrolling
  材料不经加热直接在室温下进行的轧制过程。冷扎时金属材料有加工硬化产生。
  5.3.7
  拉拔drawing
  将金属坯料从小于坯料断面的模缝中拉出,使其断面减少而长度增加的加工方法。拉拔多在冷态下进行,亦称冷拉。
  5.3.8
  挤压extrusion
  将金属放在密闭的挤压筒内,使之从规定的模孔中挤出,以便获得不同形状和尺寸成品的加工方法。通常分热挤压和冷挤压两种。
  5.3.9
  锻造forging
  对金属毛坯施加压力或冲击力,使其产生塑性变形,制成所需几何形状、尺寸和组织性能的锻件的一种加工方法。
  
  6金属物理性能
  
  6.1弹性性能
  6.1.1
  密度density
  物体单位体积的质量。符号为P,单位为kg/m3。
  6.1.2
  弹性模量elasticmodulus
  材料在弹性变形范围内,正应力与相应的正应变之比值称为弹性模量,表征材料抵抗弹性变形的能力,是材料常数。主要取决于材料的成分及晶体结构。符号为E,单位为Pa。
  6.1.3
  切变模量shearmodulus
  材料在弹性变形范围内,切应力与相应的切应变之比值称为切变模量,表征材料抵抗切应变的能力。有时也称为剪切模量或刚性模量。符号为G,单位为Pa。
  6.1.4
  泊松比Poisson'sratio
  材料在均匀分布的轴向应力作用下,在弹性变形的比例极限范围内,横向应变与纵向应变之比值的绝对值称为泊松比,又称横向变形系数,是材料常数。符号为μ。
  6.2热学性能
  6.2.1
  熔点meltpoint
  物质的晶态与液态平衡共存的温度称为熔点,又称熔融温度。符号为tR,单位为℃。
  6.2.2
  比热容specificheat
  单位质量的物体每升高1℃所吸收的热量,或每降低1℃所放出的热量称为该物质的比热容。符号为c,单位为J/(kg·K)。
  6.2.3
  热导率thermalconductivity
  当温度梯度为1℃时单位时间内通过垂直于热传导方向的单位面积的热量称为该材料的热导率,是表征金属材料热传导速度的物理量。符号为λ,单位为W/(m·K)。
  6.2.4
  热扩散率thermaldiffusioncoefficient
  反映温度不均匀的物体中温度均匀化速度的物理量。表征不稳定导热过程的速度变动特性。它正比于热导率。符号为α,单位为m2/s。
  6.2.5
  线膨胀系数coefficentoflinearexpansion
  金属温度每升高1℃时所增加的长度与原来长度的比值,称为线膨胀系数。它是衡量材料热膨胀性大小的性能指标。符号为α1。,单位为K-1。
  6.3电学性能
  6.3.1
  电阻率resistivity
  长度为1m、截面积1m2的导体所具有的电阻值为电阻率,是表示材料通过电流时阻力大小的指标,是反映介质材料绝缘性能的参数。符号为P,单位为Ω·m。
  6.3.2
  电导率electricconductivity
  导体维持单位电位梯度(即电位差)时,流过单位面积的电流称为电导率,它是反映导体中电场
  和电流密度关系的物理量,是衡量导体导电性能的指标,与电阻率互为倒数。符号为γ,单位为S/m。
  6.4磁学性能
  6.4.1
  铁损totallossintheiron
  单位重量的铁磁材料在动态磁化条件下,由于磁滞和涡流效应而消耗的能量称为铁损,它包括磁滞损耗、涡流损耗和剩余损耗。符号为P,单位为W/kg。
  6.4.2
  磁导率magneticpermitivity
  磁感应强度与磁场强度的比值称为磁导率。是衡量磁性材料磁化难易程度的性能指标。符号为μ,单位为H/m。
  6.4.3
  磁感应强度magneticinductionstrength
  磁场中某一点的磁场强度,等于放在那一点与磁场方向垂直的通电导线所受的磁场作用力与导线中的电流强度和导线长度乘积的比值,它是衡量磁性材料磁性强弱的重要指标。磁感应强度亦称为磁通量密度,符号为B,单位为T。
  6.4.4
  矫顽力coerciveforce
  磁性材料经过一次磁化并去处除磁场强度后,磁感应强度并不消失,仍保留一定的剩余磁感应强度,即剩磁。为消除磁感应强度而施加的反向磁场强度的绝对值即为铁磁体的矫顽磁力或简称为矫顽力。是衡量磁性材料退磁和保磁能力的性能指标。符号为Hc,单位为A/m。
   
  7金属力学性能
  
  7.1应力与应变
  7.1.1
  应力stress
  物体受外力作用后所导致物体内部之间的相互作用力称为内力,单位面积上的内力称为内应力。
  7.1.2
  标称应力nominalstress
  不考虑几何不连续性(如孔、沟、圆角等)所产生的影响而按简单理论计算的净截面上一点的应力。
  7.1.3
  正应力normalstress
  垂直于力作用平面的应力分量,有拉应力和压应力两种,规定拉应力为正、压应力为负。
  7.1.4
  拉应力tensilestress
  力的方向背离力作用平面的正应力,称为拉应力。
  7.1.5
  压应力compressivestress
  力的方向指向力作用平面的正应力,称为压应力。
  7.1.6
  切应力shearstress
  剪切于力作用平面内的应力分量,称为切应力。
  7.1.7
  扭应力torsionalstress
  由扭转作用而引起的横截面内的切应力,称为扭应力。
  7.1.8
  应变strain
  由外力所引起的物体原始尺寸或形状的相对变化,通常以百分数表示。
  7.2常规力学性能
  7.2.1
  强度strength
  金属抵抗永久变形和断裂能力的总称。常用的强度指标有屈服强度Re和抗拉强度Rm等。
  7.2.2
  弹性elasticity
  物体在外力作用下改变其形状和尺寸,当外力卸除后物体又回复到原始形状和尺寸,这种特性称为弹性。
  7.2.3
  弹性极限elasticitylimit
  拉伸试样保持弹性变形的最大应力为弹性极限。
  7.2.4
  抗拉强度(Rm)tensilestrength
  试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为Rm,单位为MPa。
  7.2.5
  规定总延伸强度(Rt)proofstrengthoftotalextension
  试样标距部分的总伸长(弹性伸长加塑性伸长)达到规定的原始标距百分比时的应力。表示此应
  力的符号应附以角注说明所规定的百分比。例如:Rt0.5表示规定总伸长率达0.5%时的应力。
  7.2.6
  规定残余延伸强度(Rr)permanentsetstrength
  试样卸除拉伸力后,其标距部分的残余伸长达到规定原始标距百分比时的应力。表示此应力的符号应附以角注说明所规定的百分比。例如:Rr0.2表示规定残余伸长率为0.2%时的应力。
  7.2.7
  规定非比例延伸强度(Rp)proofstrengthofnon-proportionalelongation
  试样标距部分的非比例伸长达到规定原始标距百分比时的应力。表示此应力的符号应附以角注说明所规定的百分比。例如:Rp0.1表示规定非比例伸长率为0.01%时的应力。
  7.2.8
  屈服点yieldpoint
  有明显屈服现象的材料试样在拉伸试验过程中力不增加(保持恒定)仍能继续伸长(变形)时的
  应力。
  7.2.9
  上屈服强度(ReH)upperyieldstrength
  试样发生屈服而力首次下降前的最大应力。
  7.2.10
  下屈服强度(ReL)loweryieldstrength
  当不计初始瞬时效应时屈服阶段中的最小应力。
  7.2.11
  屈强比yieldratio
  材料的屈服强度与抗拉强度之比。
  7.2.12
  塑性plasticity
  断裂前材料发生不可逆永久变形的能力,常用的塑性判据是伸长率和断面收缩率。
  7.2.13
  超塑性superplasticity
  一些金属在特定组织状态下(主要是超细晶粒),特定温度范围内和一定变形速度下表现出极高
  的塑性,其伸长率可达百分之几百甚至百分之几千,这种现象称为超塑性。
  7.2.14
  伸长率percentageelongation
  试样在试验中标距的伸长与原始标距的百分比。
  7.2.15
  断后伸长率(A)percentageelongationafterfracture
  试样拉断后,标距的残余伸长与原始标距的百分比。
  7.2.16
  断面收缩率(Z)percentagereductionofarea
  试样拉断后,缩颈处横截面的最大缩减量与原始横截面积的百分比。
  7.2.17
  塑性应变比plasticstrainratio
  金属薄板试样轴向拉伸到产生均匀塑性变形时,试样标距内宽度方向的真实应变与厚度方向的真实应变之比。
  7.2.18
  应变硬化指数strainhardeningexponents
  经验的真实应力与真实应变关系σ=kεn中的指数n。用假定对数真实应力和对数真实应变之间成线性关系的斜率来评定。表征材料在塑性变形过程中形变强化能力的一种量度。
  7.2.19
  真实应力StruthstressS
  真实应力为工程应力σ和工程应变ε的函数,S=σ(1+ε)。
  7.2.20
  真实应变еtruthstrainе
  真实应变为工程应变ε的函数,е=1n(1+g)。
  7.2.21
  抗压强度compressivestrength
  试样压至破坏前承受的最大标称压应力。只有材料发生破裂情况才能测出抗压强度。
  7.2.22
  抗扭强度torsionalstrength
  试样在扭断前承受的最大扭矩,按弹性扭转公式计算的试样表面最大切应力。
  7.2.23
  抗剪强度shearstrength
  试样剪切断裂前所承受的最大切应力。符号为τ,单位为MPa。
  单剪试验时,抗剪强度按下式计算:
  
  双剪试验时,抗剪强度按下式计算:
  
  式中:
  τb——抗剪强度,N/mm2;
  Fb——断裂前的最大试验力,N;
  So——试样原始横截面积,mm2。
  7.2.24
  抗弯强度bendingstrength
  试样在弯曲断裂前所承受的最大正应力。
  7.2.25
  冷弯性coldbendproperty
  金属材料在室温下能承受弯曲变形而不破坏的能力。出现裂纹前能承受的弯曲程度越大,则材料的冷弯性越好。弯曲程度一般用弯曲角度和弯芯直径对材料厚度的比值来表示。
  7.2.26
  反复弯曲性reversebendproperty
  金属板、带、线(丝)材或金属覆盖层承受反复弯曲而不产生裂缝的能力。
  7.2.27
  冲压性impactforgingproperty
  金属经冲压变形而不产生裂纹等缺陷的能力。
  7.3硬度
  7.3.1
  硬度hardness
  材料抵抗局部变形,特别是塑性变形、压痕或划痕的抗力,是衡量金属软硬的判据。
  7.3.2
  压痕硬度indentationhardness
  在规定的静态试验力下将压头压入材料表面,用压痕深度或压痕表面积评定的硬度。
  7.3.3
  布氏硬度值Brinellhardnessnumber
  用球面压痕单位面积上所承受的平均压力表示的硬度值,符号为HB。用钢球(或硬质合金球)试
  验时的布氏硬度值,可表示为HBS(HBW)。布氏硬度值按下式计算:
  
  
  式中:
  F——试验力,N;
  D——球体直径,mm;
  d——压痕平均直径,mm。
  7.3.4
  残余压痕深度增量permanentincreaseofdepthofindentation
  洛氏硬度试验中,在卸除主试验力并保持初始试验力的条件下测量的深度方向塑性变形量,用e表示。
  对于洛氏硬度试验,e的单位为0.002mm。
  对于表面洛氏硬度试验,e的单位为0.001mm。
  7.3.5
  洛氏硬度值Rockwellhardnessnumber
  用洛氏硬度相应标尺刻度满量程值与残余压痕深度增量之差计算的硬度值。
  对于用金刚石圆锥压头进行的试验,洛氏硬度值为100-e;
  对于用钢球压头进行的试验,洛氏硬度值为130-e。
  7.3.6
  洛氏硬度标尺Rckwellhardnessscale
  由不同类型压头、试验力及硬度公式组合所表征的洛氏硬度。例如:
  A标尺洛氏硬度(HRA),是用圆锥角为1200的金刚石压头,在初始试验力为98.07N、总试验力
  为588.4N条件下试验,用100-e计算出的洛氏硬度。
  B标尺洛氏硬度(HRB),是用直径为1.588mm的钢球,在初始试验力为98.07N、总试验力为980.7N
  条件下试验,用130-e计算出的洛氏硬度。
  C标尺洛氏硬度(HRC),是用圆锥角为1200的金刚石压头,在初始试验力为98.07N、总试验力
  为1471.0N条件下试验,用100-e计算出的洛氏硬度。
  7.3.7
  表面洛氏硬度值Rockwellsuperficialhardnessnumber
  用表面洛氏硬度相应标尺刻度满量程值与残余压痕深度增量之差计算的硬度值,即100-e。
  7.3.8
  维氏硬度值Vickershardnessnumber
  用正四棱锥形压痕单位表面积上所承受的平均压力表示的硬度值。维氏硬度值按下式计算:
  (4)
  式中:
  F——试验力,N;
  d——压痕两对角线长度算术平均值,mm。
  7.3.9
  努氏硬度值Knoophardnessnumber
  用菱形压痕投影单位面积承受的平均压力表示的硬度值。其计算公式为:
  (5)
  式中:
  F——试验力,N;
  d——压痕长对角线长,mm。
  7.3.10
  肖氏硬度值Shorehardnessnumber
  用冲头弹起的高度和规定高度的比值与肖氏硬度系数的乘积表示的硬度值。其计算公式为:
  (6)
  式中:
  K——肖式硬度系数;
  h——冲头弹起的高度,mm;
  h0——规定高度,mm。
  7.3.11
  里氏硬度值Leebhardnessnumber
  用规定质量的冲击体在弹力作用下以一定速度冲击试样表面,用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度值。计算公式如下:
  (7)
  式中:
  HL——里氏硬度;
  vR——冲击体回弹速度;
  vA——冲击体冲击速度。
  7.4韧性
  7.4.1
  韧性toughness
  金属在断裂前吸收变形能量的能力,称为韧性。金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而减小。
  7.4.2
  冲击吸收功impactabsorbingenergy
  规定形状和尺寸的金属试样在冲击试验力一次作用下折断时所吸收的功,符号为AK,单位为J。
  7.4.3
  冲击韧度impacttoughness
  冲击试样缺口底部单位横截面积上的冲击吸收功,符号为αK,单位为J/cm2。
  7.4.4
  应变时效冲击吸收功strainagingimpactabsorbingenergy
  经规定应变和人工时效后试样的冲击吸收功,符号为AKS,单位为J。
  7.4.5
  应变时效冲击韧度strainagingimpacttoughness
  试样缺口底部单位横截面积上的应变时效冲击吸收功,符号为αKS,单位为J/cm2。
  7.4.6
  应变时效敏性系数strainagingsensitivityfactor
  未经受应变时效与经受应变时效试样的冲击吸收功平均值之差,除以未经受应变时效试样的冲击吸收功平均值所得的值,用百分数表示。
  7.4.7
  韧脆转变温度tonghness-brittlenesstransitiontemperature
  在一系列不同温度的冲击试验中,冲击吸收功急剧变化或断口断裂形貌急剧转变的温度区域。
  7.4.8
  无塑性转变温度NDTnil-ductivitytransitiontemperatureNDT
  按标准落锤试验方法试验时,试样发生断裂的最高温度。
  7.4.9
  断裂形貌转变温度FATTfractureapperancetransitiontemperatureFATT
  在一系列不同温度下,用夏比“V”形缺口试样进行冲击试验,根据断口的脆性面积(结晶状面积)与断口总面积的比值确定材料的韧脆转变温度。常用50%的面积比表示材料的韧脆转变温度,即FATT50。也有的用20%的面积比表示材料的韧脆转变温度,即FATT20。
  7.5蠕变、持久与应力松弛性能
  7.5.1
  蠕变creep
  在规定温度和恒应力作用下,材料塑性变形随时间而增加的现象。广义的蠕变按温度可分为三种:在0~0.15Tm(Tm为金属材料的熔点)之间发生的蠕变称为对数蠕变;在0.15Tm~1.0Tm之间发生的蠕变称为回复蠕变(高温蠕变);在0.85Tm~1.0Tm之间发生的蠕变称为扩散蠕变。
  7.5.2
  蠕变激活能creepactivationenergy
  控制稳态蠕变速率的热激活能。在不同温度下,有不同的热激活机制控制着蠕变速率。
  7.5.3
  蠕变速率creeprate
  拉伸蠕变试验中试样单位时间的变形,即给定时间内蠕变曲线的斜率,或称蠕变速度。
  7.5.4
  蠕变曲线creepcurve
  以蠕变变形量作为时间函数所绘制的曲线。
  7.5.5
  蠕变第一阶段thefirststageofcreep
  蠕变速率随时间逐渐降低的期间。
  7.5.6
  蠕变第二阶段thesecondstageofcreep
  蠕变速率恒定的期间,亦称为恒速蠕变阶段或称为稳态蠕变阶段。
  7.5.7
  蠕变第三阶段thethirdstageofcreep
  蠕变速率随时间逐渐增加的期间。
  7.5.8
  蠕变极限creeplimit
  在规定温度下使试样在规定时间内产生的蠕变总伸长率或稳态蠕变速率不超过规定值的最大应
  力,它表征金属材料抵抗蠕变变形的能力。符号为上标T表示试验温度(℃),下标V表示规定的蠕变速度。单位为MPa。例如:=4.9MPa,表示在蠕变试验第二阶段,温度为600℃,蠕变速度为1×10-5%/h时的蠕变极限为4.9MPa。
  7.5.9
  持久强度极限stressrupturelimit
  试样在规定的温度下达到规定的试验时间而不致断裂的最大应力,表征金属材料抗高温蠕变断裂的能力。符号为,上标T表示试验温度(℃),下标t表示持续时间。单位为MPa。例如:=8.8MPa,表示580℃时,10万h的持久强度极限为8.8MPa。
  7.5.10
  持久塑性stressruptureplasticity
  材料在一定温度及恒定试验力作用下的塑性变形。用蠕变断裂后试样的延伸率和断面收缩率表示。
  7.5.11
  持久断后伸长率percentageelongationofstress-rupture
  持久试样断裂后,在室温下标距的伸长与原始标距的百分比。
  7.5.12
  持久断面收缩率percentagereductionofareaofstress-rupture
  持久试样断裂后,在室温下横截面积最大缩减量与原始横截面积的百分比。
  7.5.13
  持久缺口敏感系数stressrupturenotchsensitivityfactor
  在缺口试样与光滑试样断裂时间相同的条件下,试验应力的比值。
  在缺口试样与光滑试样试验应力相同的条件下,持久断裂时间的比值。
  7.5.14
  应力松弛stressrelaxation
  在规定温度及初始变形或位移恒定的条件下,材料中的应力随时间而减小的现象。
  7.5.15
  初始应力initialstress
  应力松弛试验开始时施加全部试验力瞬间试样上的应力。
  7.5.16
  剩余应力remainingstress
  应力松弛试验中任一时间试样上所保持的应力。
  7.5.17
  松弛应力relaxedstress
  应力松弛试验中任一时间试样上所减少的应力,即初始应力与剩余应力之差。
  7.5.18
  应力松弛曲线stressrelaxationcurve
  用剩余应力作为时间的函数所绘制的曲线。
  7.5.19
  应力松弛速度stressrelaxationrate
  单位时间的应力下降值。即给定瞬间的应力松弛曲线的斜率。
  
  7.5.20
  应力松弛第一阶段thefirststageofstressrelaxation
  应力松弛速度随时间逐渐减少的期间。
  7.5.21
  应力松弛第二阶段thesecondstageofstressrelaxation
  应力松弛速度保持恒定的期间。
  7.6疲劳性能
  7.6.1
  疲劳fatigue
  材料在循环应力和应变作用下,在一处或几处产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然完全断裂的现象。
  7.6.2
  高周疲劳high-cyclefatigue
  材料在低于其屈服强度的循环应力作用下,经105以上循环次数而产生的疲劳,其循环频率通常高于20Hz。
  7.6.3
  低周疲劳low-cyclefatigue
  金属材料在超过其屈服强度的循环应力或超过其屈服应变作用下,经102~105次循环而产生的疲劳。也称塑性疲劳或应变疲劳,其循环频率通常低于10Hz。
  7.6.4
  热疲劳thermalfatigue
  由于温度的循环变化而产生的循环热应力所导致的疲劳。
  7.6.5
  高温疲劳high-tempraturefatigue
  狭义的高温疲劳是指金属材料在再结晶温度以上发生的疲劳;广义的高温疲劳是指金属材料在高于室温的温度下发生的疲劳。
  7.6.6
  机械疲劳mechanicalfatigue
  在室温和没有腐蚀介质情况下发生的疲劳。
  7.6.7
  热机械疲劳thermalmechanicalfatigue
  温度循环与应变循环叠加的疲劳。
  7.6.8
  冲击疲劳impactfatigue
  材料在重复冲击载荷作用下,产生局部累积损伤所导致的疲劳。
  7.6.9
  接触疲劳contactfatigue
  材料在循环接触应力作用下,产生局部永久性累积损伤,经一定循环次数后,接触表面发生麻点,浅层或深层剥落的损伤过程。
  7.6.10
  腐蚀疲劳corrosionfatigue
  腐蚀环境和循环应力(应变)的复合作用所导致的疲劳。
  7.6.11
  疲劳寿命fatiguelife
  在规定的循环应力或应变作用下,材料失效时所经受的循环次数。符号为N。
  7.6.12
  中值疲劳寿命medianfatiguelife
  将在同一试验条件下所试一组试样的疲劳寿命观测值,按大小顺序排列时,处于正中间的一个数值。即具有50%存活率的疲劳寿命。当试样为偶数时,为处于正中的两个数的平均值。
  7.6.13
  P%存活率的疲劳寿命fatiguelifeforP%survival
  给定载荷下母体的P%达到或超过的疲劳寿命的估计值。中值疲劳寿命的观测值为估计50%存活率的疲劳寿命。P%存活率的疲劳寿命可以从个体疲劳寿命估计。P可以是95、90等。
  7.6.14
  N次循环的疲劳强度fatiguestrengthatNcycles
  从S-N曲线上所确定的恰好在N次循环时失效的估计应力值。此值的使用条件必须与用来确定它的S-N曲线的测定条件相同。此值一般是指在平均应力为零的条件下,给定一组试样的50%能经受N次应力循环时的最大应力,或应力幅,亦即所谓的N次循环的中值疲劳强度。
  7.6.15
  N次循环的中值疲劳强度medianfatiguestrengthatNcycles
  母体的50%能经受N次循环的应力水平的估计值。由于试验不能直接求得N次循环的疲劳强度频率分布,故中值疲劳强度乃由疲劳寿命分布特点导出。
  7.6.16
  N次循环的P%存活率的疲劳强度fatiguestrengthforP%survivalatNcyclea
  母体的P%经受N次循环而不失效的应力水平的估计值。P可以是95、90等。
  7.6.17
  疲劳极限fatiguelimit
  指定循环基数下的中值疲劳强度。循环基数一般取107或更高一些。
  7.6.18
  P%存活率的疲劳极限fatiguelimitforP%survival
  指定循环基数下,具有P%存活率的疲劳强度。
  7.6.19
  理论应力集中系数theoreticalstressconcentrationfactor
  按弹性理论计算所得缺口或其他的应力集中部位的最大应力与相应的标称应力的比值。符号为Kt。
  7.6.20
  疲劳缺口系数fatiguenotchfactor
  在相同条件和在N次循环的相同存活率下,无应力集中试样的疲劳强度与有应力集中试样的疲劳强度之比。符号为Kf。规定该系数时,应注明试样的几何形状、应力幅、平均应力和疲劳寿命值。
  7.6.21
  疲劳缺口敏感度fatiguenotchsencitivity
  疲劳缺口系数Kf与理论应力集中系数Kt一致程度的一种度量。以(Kf-1)/(Kt-1)来表示。
  
  7.6.22
  S-N曲线S-Ncurve
  应力与疲劳循环周次的关系曲线,表示规定平均应力、应力比和规定存活率下的S-N关系曲线。N通常采用对数标尺,而S则采用线性标尺或对数标尺。
  7.6.23
  50%存活率的S-N曲线S-Ncurvefor50%survival
  在各应力水平下拟合中值疲劳寿命的曲线。它是所加应力与50%的母体能够尚存的破坏循环数之间关系的一种估计量。
  7.6.24
  P%存活率的S-N曲线S-NcurveforP%survival
  在各应力水平下拟合P%存活率疲劳寿命的曲线。它是所加应力与P%母体能够尚存的破坏循环数之间关系的一种估计量。P可以是95、90等。
  7.6.25
  P-S-N曲线P-S-Ncurve
  以应力为纵坐标,以存活率P的疲劳寿命为横坐标所绘出的曲线,即存活率-应力-疲劳寿命关系曲线。作图时,疲劳寿命采用对数标尺,或者应力与疲劳寿命均采用对数标尺。
  7.6.26
  等寿命疲劳图constantlifefatiguediagram
  通常用直角坐标表示的一族曲线,其每条曲线分别对应一疲劳寿命。等寿命图表达给定疲劳寿命下的应力幅与平均应力,或最大应力与最小应力之间的关系。
  7.6.27
  循环硬化与软化cyclichardeningandcyclicsoftelling
  在控制应变循环下,应力峰值随循环数的增加而上升,或在控制应力循环下,应变幅度随循环数的增加而减少的现象称为循环硬化;反之则称为循环软化。
  7.6.28
  应力强度因子范围ΔKTherangeofstressindensityfactor
  最大与最小应力强度因子值之差,即ΔK=Kmax-Kmin。
  7.6.29
  疲劳裂纹扩展速率dα/dNfatiguecrackgrowthratesdα/dN
  载荷循环一次的疲劳裂纹扩展量,是裂纹尖端应力强度因子范围ΔK的函数。
  7.6.30
  疲劳裂纹扩展门槛值ΔKthfatiguecrackgrowththresholdΔKth
  在疲劳试验中,疲劳裂纹扩展速率接近于零或裂纹停止扩展时所对应的裂纹尖端应力强度因子范围,即当ΔK降至ΔKth时疲劳裂纹停止扩展。工程中定义疲劳裂纹扩展速率等于10-7mm/周所对应的应力强度因子范围值为ΔKth。
  7.7断裂韧度
  7.7.1
  断裂力学fracturemechanics
  利用宏观力学原理,定量研究含裂纹部件裂纹开始扩展的条件和扩展规律的一门科学。它是以材料内部不可避免存在原始裂纹为前提,根据线弹性理论和弹塑性理论,分析裂纹体受载后裂纹尖端的应力场和应变场,提出描述裂纹尖端附近应力场的力学参量和裂纹失稳扩展的力学判据,确定材料性质、裂纹尺寸和试件几何形状、工作应力之间的定量关系,从而建立新的断裂判据,为合理选材、建立无损探伤验收标准以及进行强度设计提供理论依据。断裂力学分为两部分,其一是建立在线弹性力学基础上的线弹性断裂力学;其二是建立在弹性力学基础上的弹塑性断裂力学。
  7.7.2
  线弹性断裂力学linearelasticfracturemechanics
  用固体线弹性理论分析固体中已存在裂纹附近的应力场,基本原则是从分析线弹性均匀和各向同性连续体中个别裂纹(假定构件只含有一个裂纹且其顶端只有一个塑性区)行为出发,得到的是各向同性的二维弹性理论的结果,因其对裂纹顶端进行的力学分析符合线性条件,故称线弹性断裂力学。
  7.7.3
  应力强度因子stressintensityfactor
  均匀线弹性体中特定型式的理想裂纹尖端应力场的量值。根据受力情况可分为Ⅰ型(张开型)、
  Ⅱ型(剪切型)和Ⅲ型(撕裂型)应力强度因子三种。分别用符号KⅠ、KⅡ和KⅢ表示,单位为MPa。
  7.7.4
  断裂韧度fracturetoughness
  含裂纹构件抵抗裂纹失稳扩展(从而导致构件断裂)的能力,是量度裂纹扩展阻力的通用术语。
  7.7.5
  平面应变断裂韧度plane-strainfracturetoughness
  满足平面应变条件的裂纹试样在Ⅰ型加载条件下,裂纹尖端的应力强度因子KⅠ达到临界值KⅠc时,裂纹发生失稳扩展,KⅠc叫材料的平面应变断裂韧度。单位为MPa。
  7.7.6
  裂纹尖端张开位移(CTOD)cracktipopeningdisplacement
  弹塑性体受Ⅰ型(张开型)加载时,原始裂纹尖端由于弹性和塑性变形而引起的裂纹张开位移。
  符号为δ单位为mm。
  7.7.7
  CTOD值δRCTODvalue
  相应于某一裂纹扩展量的CTOD值。
  7.7.8
  δR曲线δRcurve
  δR与裂纹扩展量Δα的最佳回归曲线。
  7.7.9
  特征CTOD值characteristicvalueofTCOD
  启裂、失稳或最大载荷的CTOD值。表征材料抵抗裂纹的启裂或扩展的能力。
  7.7.10
  表观启裂CTOD值apparentcrackinitiationCTOD
  δR曲线上Δα=O.05mm所对应的CTOD值。
  7.7.11
  条件启裂CTOD值conditionalcrackinitiationCTOD
  δR曲线上△α=0.2mm所对应的CTOD值。
  7.7.12
  脆性启裂CTOD值brittlecrackinitiationCTOD
  稳定裂纹扩展量Δα<0.2mm脆性失稳断裂点或突进点所对应的CTOD值。
  7.7.13
  脆性失稳CTOD值brittleinstabflityCTOD
  稳定裂纹扩展量Δα>0.2mm脆性失稳断裂点或突进点所对应的CTOD值。
  7.7.14
  最大载荷CTOD值CTODatmaximumload
  最大载荷点或最大载荷平台开始点所对应的CTOD值。
  7.7.15
  裂纹扩展力crack-extensionforce
  弹性体中理想裂纹扩展每单位面积的弹性能。
  7.7.16
  J积分J-integral
  围绕裂纹前缘从裂纹的一侧表面至另一侧表面的线积分或面积分的数学表达式,用来表征裂纹前缘周围地区的局部应力-应变场。符号为J,单位为kJ/m2。
  7.7.17
  JR曲线JRcurve
  J积分与裂纹扩展量Δα的关系曲线,简称JR曲线。
  7.7.18
  表观启裂韧度apparentcrackinitiationtoughness
  JR阻力曲线与钝化线的交点相应的J值。
  7.7.19
  延性断裂韧度ductilefracturetoughness
  按GB2038标准方法测定的JⅠC值定义为延性断裂韧度。它与裂纹开始扩展时的J值接近,是裂纹起始稳定扩展时J的工程估计量。符号为JⅠC,单位为kJ/m2。
  7.8金属磨损
  7.8.1
  磨损wear
  物体表面相接触并作相对运动时,材料自该表面逐渐损失以致表面损伤的现象。
  7.8.2
  体积磨损wearofvolume
  磨损试验后试样失去的体积。
  7.8.3
  质量磨损wearofweight
  磨损试验后试样失去的质量。
  7.8.4
  耐磨性wearing-resistanceproperty
  用体积磨损或质量磨损表征的材料抵抗磨损的性能指标。
  7.8.5
  磨料磨损abrasivewear
  由于硬质颗粒或硬质突出物沿固体表面强制相对运动所引起的磨损。
  
  7.8.6
  粘着磨损adhesivewear
  由于在相接触的固体表面之间局部粘着而造成的磨损。
  7.8.7
  灾变磨损catastrophicwear
  由于磨损而迅速造成表面损伤以致大大缩短材料使用寿命的磨损。
  7.8.8
  腐蚀磨损corrosivewear
  在化学或电化学反应明显的介质中产生的磨损。
  7.8.9
  氧化磨损oxidewear
  材料表面因受空气或润滑剂中氧的作用形成氧化膜,然后氧化膜又不断地被磨去而使材料损耗的现象,属腐蚀磨损的一种。
  7.8.10
  腐蚀机械磨损corrosion-mechanicalwear
  以化学或电化学反应与滑动、滚动或重复冲击的机械联合作用而产生的材料损失。如空气预热器管组的磨损。
  7.8.11
  微动磨损fretting
  两表面间由于振幅很小的相对振动所产生的磨损。一般发生在紧密配合的轴颈,汽轮机和压汽机叶片配合处,受振动影响的螺栓等连接件的接合面等部位。
  7.8.12
  疲劳磨损fatiguewear
  由于循环交变应力引起疲劳而使材料表面脱落造成的磨损。主要产生在滚动接触的机械零件如滚动轴承等的表面。
  7.8.13
  接触疲劳磨损contactfatiguewear
  材料的微观体积受循环接触应力作用,产生重复变形,导致裂纹和分离出微片或颗粒的磨损。如轴承轴瓦、主油泵以及汽轮机叶片根部等的磨损。
  8焊接与喷涂
8.1焊接
  8.1.1
  焊接welding
  通过加热或加压,或两者并用,并且用或不用填充材料,使工件达到结合的一种方法。
  8.1.2
  焊接方法weldingprocess
  指特定的焊接方法,如埋弧焊、气体保护焊等,其含义包括该方法涉及的冶金、电、物理、化学及力学原则等内容。
  8.1.3
  熔焊fusionwelding
  将待焊处的母材金属熔化以形成焊缝的焊接方法,也叫熔化焊。
  8.1.4
  手工焊manualwelding
  手持焊炬、焊枪或焊钳进行操作的焊接方法。
  8.1.5
  堆焊surfacing
  为增大或恢复焊件尺寸,或使焊件表面获得具有特殊性能的熔敷金属而进行的焊接。
  在美国焊接协会(AWS)中单为增大或恢复尺寸的堆焊称为熔敷堆焊(buildup),为满足耐热、耐蚀的堆焊称为复层堆焊(cladding),为满足耐磨要求的堆焊称为耐磨堆焊(hardfacing),为调整表面成分起隔离作用的称为隔离层堆焊(buttering)。
  8.1.6
  气焊oxyfuelgaswelding
  利用气体火焰作热源的焊接法。最常用的是氧乙炔焊。
  8.1.7
  自动焊automaticwelding
  用自动焊接装置完成全部焊接操作的焊接方法。
  8.1.8
  电弧焊arcwelding
  利用电弧作为热源的熔焊方法。
  8.1.9
  碳弧焊carbonarcwelding
  利用碳棒作电极进行焊接的电弧焊方法。
  8.1.10
  药芯焊丝电弧焊fluxcoredarcwelding
  依靠药芯焊丝在高温时反应形成的熔渣和气体保护焊接区进行焊接的方法,也有另加保护气体的。
  8.1.11
  埋弧焊submergedarcwelding
  电弧在焊剂层下燃烧进行焊接的方法。
  8.1.12
  气体保护电弧焊gasmetalarcwelding(GMAW)
  用外加气体作为电弧介质并保护电弧和焊接区的电弧焊,简称气体保护焊。
  8.1.13
  惰性气体保护焊inert-gaswelding;inertgasshieldedarcwelding
  使用惰性气体作为保护气体的气体保护焊。
  8.1.14
  钨极惰性气体保护焊gastungstenarcwelding(GTAW)
  使用纯钨或活化钨(钍钨、铈钨等)电极的惰性气体保护焊。
  8.1.15
  熔化极惰性气体保护焊metalinert-gaswelding
  使用熔化电极的惰性气体保护焊。
  
  8.1.16
  混合气体保护焊mixedgaswelding
  由两种或两种以上气体,按一定比例组成的混合气体作为保护气体的气体保护焊。
  8.1.17
  氩弧焊argonshieldedarcwelding
  使用氩气作为保护气体的气体保护焊。
  8.1.18
  脉冲氩弧焊argonshieldedarcwelding-pulsedarc
  利用基值电流保持主电弧的电离通道,并周期性地加一同极性高峰值脉冲电流产生脉冲电弧,以熔化金属并控制熔滴过渡的氩弧焊。
  8.1.19
  钨极脉冲氩弧焊gastungstenarcwelding-pulsedarc
  使用钨极的脉冲氩弧焊。
  8.1.20
  熔化极脉冲氩弧焊gasmetalarcwelding-pulsedarc
  使用熔化电极的脉冲氩弧焊。
  8.1.21
  等离子弧焊plasmaarcwelding(PAW)
  借助水冷喷嘴对电弧的拘束作用,获得较高能量密度的等离子弧进行焊接的方法。
  8.1.22
  电渣焊electroslagwelding
  利用电流通过液体熔渣所产生的电阻热进行焊接的方法。根据使用的电极形状,可分为丝极电渣焊、板极电渣焊和熔嘴电渣焊等。
  8.1.23
  电子束焊electronbeamwelding
  利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。
  8.1.24
  激光焊laserbeamwelding
  以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。
  8.1.25
  窄间隙焊narrowgapwelding
  厚板对接接头,焊前不开坡口或只开小角度坡口,并留有窄而深的间隙,采用气体保护焊或埋弧焊的多层焊完成整条焊缝的高效率焊接法。
  8.126
  摩擦焊frictionwelding
  使一个不转动的部件与一个转动的部件在恒定或逐渐增加的压力下保持接触,直到接触面达到焊接温度,然后停止转动,使部件焊接在一起。
  8.1.27
  电阻焊resistantwelding
  将两个焊件组合后置于两电极之间,施以压力并通以电流,利用焊接表面的接触电阻热进行焊接。
  8.1.28
  钎焊brazing
  采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔点温度,利用液态钎料润湿母材填充接头间隙并与母材相互扩散实现连接焊件的方法。
  8.1.29
  补焊(返修焊)repairwelding
  为修补部件(铸件、锻件、机械加工件或焊接结构件)的缺陷而进行的焊接。
  8.1.30
  母材金属basemetal;parentmetal
  被焊接的金属材料的统称。
  8.1.31
  接头joint
  由两个或两个以上部件要用焊接组合或已经焊合的接点。检验接头性能应考虑焊缝、熔合区、热影响区甚至母材等不同部位的相互影响。
  8.1.32
  对接接头buttjoint
  两部件表面构成大于或等于1350,小于或等于1800夹角的接头。
  8.1.33
  角接接头cornerjoint
  两部件端部构成大于300,小于1350夹角的接头。
  8.1.34
  T型接头T-joint
  一部件之端面与另一部件表面构成直角或近似直角的接头。
  8.1.35
  搭接接头lapjoint
  两部件部分重叠构成的接头。
  8.1.36
  十字接头cruciformjoint
  三个部件装配成“十字”形的接头。
  8.1.37
  热影响区heat-affectedzone
  焊接或切割过程中,材料因受热(但未熔化)的影响而发生金相组织和力学性能变化的区域。
  8.1.38
  过热区overheatedzone
  焊接热影响区中,具有过热组织或晶粒显著粗大的区域。
  8.1.39
  熔合区bondarea
  焊缝与母材交接的过渡区,即熔合线处微观显示的母材半熔化区。
  8.1.40
  熔合线(熔化线)weldinterface
  焊接接头横截面上,宏观腐蚀所显示的焊缝轮廓线。
  8.1.41
  焊缝weld
  焊件经焊接后所形成的结合部分。
  8.1.42
  对接焊缝buttweld
  在焊件的坡口面间或一零件的坡口面与另一零件表面间焊接的焊缝。
  8.1.43
  角焊缝filletweld
  沿两直角或近直角零件的交线所焊接的焊缝。
  8.1.44
  焊趾weldtoe
  焊缝表面与母材的交界处。
  8.1.45
  焊脚filletweldleg
  角焊缝的横截面中,从一个直角面上的焊趾到另一个直角面表面的最小距离。
  8.1.46
  余高weldreinforcement
  超出母材表面连线上面的那部分焊缝金属的最大高度。
  8.1.47
  焊根weldroot
  焊缝背面与母材的交界处。
  8.1.48
  焊缝区weldzone
  焊缝及其临近区域的总称。
  8.1.49
  焊缝金属weldmetal
  构成焊缝的金属。一般指熔化的母材和填充金属凝固后形成的那部分金属。
  8.1.50
  焊缝金属区weldmetalarea
  在焊接接头横截面上测量的焊缝金属的区域。熔焊时,由焊缝表面和熔合线所包围的区域。电阻焊时,指焊后形成的熔合部分。
  8.1.51
  熔敷金属depositedmetal
  完全由填充金属熔化后所形成的焊缝金属。
  8.1.52
  焊接性weldability
  材料在限定的施工条件下焊接成按规定设计要求的构件,并满足预定服役要求的能力。焊接性受材料、焊接方法、构件类型及使用要求四个因素的影响。
  8.1.53
  碳当量carbonequivalent
  把钢中合金元素(包括碳)的含量按其作用换算成碳的相当含量。可作为评定钢材焊接性的一种
  参考指标。
  8.1.54
  裂纹敏感性cracksensitivity
  金属材料在焊接时产生裂纹的敏感程度。
  8.1.55
  焊接工艺weldingprocedure
  制造焊件所有有关的加工方法和实施要求,包括焊接准备、材料选用、焊接方法选定、焊接参数、操作、要求等。
  8.1.56
  焊接工艺评定weldingprocedureassessment
  为确保焊接接头的性能能够满足产品设计的要求,按相关的焊接工艺评定规程,对拟定的焊接工艺进行评定的工艺过程。
  8.1.57
  焊接工艺规范(程)weldingprocedurespecification
  制造焊件所有有关的加工和实践要求的细则文件,可保证由熟练焊工或操作工操作时质量的再现性。
  8.1.58
  焊接参数weldingparameter
  焊接时,为保证焊接质量而选定的各项参数(例如:焊接电流、电弧电压、焊接速度、线能量等)
  的总称。
  8.1.59
  焊前预热preheat
  焊接开始前,对焊件的全部(或局部)进行加热的工艺措施。
  8.1.60
  预热温度preheattemperature
  按照焊接工艺的规定,预热需要达到的温度。
  8.1.61
  后热postheat
  焊接后立即对焊件的全部(或局部)进行加热或保温,使其缓冷的工艺措施。
  8.1.62
  后热温度postheattemperature
  按照焊接工艺的规定,后热需要达到的温度。
  8.1.63
  层间温度interpasstemperature
  多层多道焊时,在施焊后继焊道之前,其相邻焊道应保持的温度。
  8.1.64
  焊接热循环weldthermalcycle
  在焊接热源作用下,焊件上某点的温度随时间变化的过程。
  8.1.65
  焊态aswelded
  焊接过程结束后,焊件未经任何处理的状态。
  
  8.1.66
  焊后热处理postweldheattreatment
  焊后为改善焊接接头的组织和性能或消除焊接残余应力而进行的热处理。
  8.1.67
  焊接性试验weldabilitytest
  评定母材焊接性的试验。例如:焊接裂纹试验、接头力学性能试验、接头腐蚀试验等。
  8.1.68
  焊接应力weldingstress
  焊接构件由焊接而产生的内应力。
  8.1.69
  焊接残余应力residualstress
  焊后工件冷却到室温,残留在焊件内的焊接应力。
  8.1.70
  焊接变形weldingdeformation
  由于焊接加热和冷却不均匀而引起的焊件和接头尺寸和外形上的变化。
  8.1.71
  焊接残余变形weldingresidualdeformation
  焊后,焊件残留的变形。
  8.1.72
  拘束度restraintintensity
  衡量焊接接头刚性大小的一个定量指标。拘束度有拉伸和弯曲两类。拉伸拘束度是焊接接头根部间隔产生单位长度弹性位移时,焊缝每单位长度上受力的大小;弯曲拘束度是焊接接头产生单位弹性弯曲角变形时,焊缝每单位长度上所受弯矩的大小。
  8.1.73
  焊接材料weldingmrterial
  焊接时所消耗的材料(包括焊条、焊丝、焊剂、气体等)的通称。
  8.1.74
  焊条coveredelectrode
  涂有药皮的供手弧焊用的熔化电极。它由药皮和焊芯两部分组成。
  8.1.75
  焊丝weldingwire
  焊接时作为填充金属或同时作为导电体的金属。
  8.1.76
  焊芯corewire
  焊条中被药皮包裹的金属芯。
  8.1.77
  药皮coating
  压涂在焊芯表面上的涂料层。
  8.1.78
  涂料coatingmixture;coatingmaterial
  在焊条制造过程中,由各种粉料、粘结剂,按一定比例配制的待压涂的药皮原料。
  8.1.79
  保护气体shieldinggas
  焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,使高温金属免受外界气体的侵害。
  8.1.80
  焊剂flux
  焊接时,能够熔化形成熔渣和气体,对熔化金属起保护和冶金处理作用的一种物质。用于埋弧焊的为埋弧焊剂。
  8.1.81
  熔渣slag
  焊接过程中,焊(钎)剂和非金属夹杂互相熔解,经化学变化形成覆盖于焊(钎)缝表面非金属
  物质。
  8.1.82
  焊渣solidifiedslag
  焊后覆盖在焊缝表面上的固态熔渣。
  8.1.83
  坡口groove
  根据设计或工艺需要,在焊件的待焊部位加工并装配成的一定几何形状的沟槽。
  8.1.84
  火焰气刨oxygengouging
  利用气割原理在金属表面上加工沟槽的方法。
  8.1.85
  碳弧气刨carbonarccutting
  使用石墨棒或碳棒与工件间产生的电弧使金属熔化,并用压缩空气将其吹掉,实现在金属表面上加工沟槽的方法。
  8.2焊接缺陷
  8.2.1
  焊接缺陷welddefects
  焊接过程中在焊接接头中产生的金属不连续、不致密或连接不良的现象。
  8.2.2
  未焊透incompletejointpenetration
  焊接时接头根部未完全熔透的现象。对于对接焊缝也指焊缝深度未达到设计要求的现象。
  8.2.3
  未熔合incompletefusion;lackoffusion
  熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分。
  8.2.4
  夹渣slaginclusion
  焊后残留在焊缝中的焊渣。
  8.2.5
  夹杂物inclusion
  由于焊接冶金反应产生的,焊后残留在焊缝金属中的微观非金属杂质(如氧化物、硫化物等)。
  
  8.2.6
  气孔blowhole
  焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为密集气孔、条虫状气孔和针状气孔等。
  8.2.7
  咬边undercut
  由于焊接参数选择不当,或操作方法不正确,沿焊趾的母材部位产生的沟槽或凹陷。
  8.2.8
  焊瘤overlap
  焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上所形成的金属瘤。
  8.2.9
  烧穿burn-through
  焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷。
  8.2.10
  塌陷excessivepenetration
  单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,而使焊缝正面塌陷,背面凸起的现象。
  8.2.11
  焊接裂纹weldcrack
  在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。它具有尖锐的缺口和大的长宽比的特征。
  8.2.12
  热裂纹hotcrack
  焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。包括结晶裂纹、
  多边化裂纹和液化裂纹等。
  8.2.13
  结晶裂纹crystallinecrack
  在焊缝金属结晶后期,由于低熔点共晶形成的液态薄膜削弱了晶粒间的联结,在稍高于固相线的温度区间产生的沿奥氏体晶界开裂的裂纹。
  8.2.14
  多边化裂纹polygonizationcrack
  在固相线以下再结晶温度区间,由晶格缺陷发生移动和聚集而形成的二次边界处于低塑性状态,
  在焊接应力作用下产生的沿奥氏体晶界开裂的裂纹。
  8.2.15
  液化裂纹liquationcrack
  在焊接热循环峰值温度作用下,在焊接热影响区和多层焊的层间发生重熔,在固相线以下稍低温度和焊接应力作用下产生的沿晶裂纹。
  8.2.16
  弧抗裂纹cratercrack
  引弧或息弧时在弧坑中产生的热裂纹。
  
  8.2.17
  冷裂纹coldcrack
  焊接接头冷却到较低温度下(对于钢来说在Ms温度以下)时产生的焊接裂纹。包括延迟裂纹、淬
  硬脆化裂纹及低塑性脆化裂纹等。
  8.2.18
  延迟裂纹delayedcrack
  焊接接头冷却到室温后,在淬硬组织、氢和拘束应力作用下,并经一定时间(几小时、几天、甚
  至十几天)后才能出现的焊接冷裂纹。
  8.2.19
  淬硬脆化裂纹quenchingbrittlecrack
  主要由淬硬组织和焊接应力作用下产生的裂纹。
  8.2.20
  低塑性脆化裂纹lowplasticbrittlecrack
  在较低温度下(约400℃以下),由于被焊材料的塑性储备不足而产生的裂纹。
  8.2.21
  焊根裂纹rootcrack
  沿应力集中的焊缝根部所形成的焊接冷裂纹。
  8.2.22
  焊趾裂纹toecrack
  沿应力集中的焊趾处所形成的焊接冷裂纹。
  8.2.23
  焊道下裂纹underbeadcrack
  在靠近堆焊焊道的热影响区内所形成的焊接冷裂纹。
  8.2.24
  再热裂纹reheatingcrack
  厚钢板焊接结构,于600℃~700℃进行消除应力热处理时,在热影响区的粗晶区产生的沿晶裂纹。
  8.2.25
  消除应力裂缝stressreliefcracking
  焊件在一定温度范围内再次加热时,由于高温及残余应力共同作用而产生的晶间裂纹。
  8.2.26
  层状撕裂iamellartearing
  焊接时,在焊接构件的热影响区附近,沿钢板轧层形成的呈阶梯状的一种裂纹。
  8.3喷涂
  8.3.1
  热喷涂thermalspraying
  将熔融状态的喷涂材料,通过高速气流使其雾化喷射在零件表面上,形成喷涂层的一种金属表面加工方法。
  8.3.2
  火焰喷涂flamespraying
  以气体火焰为热源的热喷涂。
  8.3.3
  爆炸喷涂bombspraying
  利用氧乙炔气混合的爆炸能量产生的冲击波,将粉末材料以极高的速度冲击到材料的基体表面。
  由于速度高、冲击力大,形成的涂层十分坚硬、光洁、致密、结合强度高。
  8.3.4
  超音速喷涂ultrasonicspraying
  超音速喷涂是爆炸喷涂的一种,其差异在于超音速喷涂的设备简便,粉末冲击到材料的基体表面的速度高于爆炸喷涂。
  8.3.5
  电弧喷涂arcspraying
  以电弧为热源的热喷涂。
  8.3.6
  等离子弧喷涂plasmaspraying
  以等离子弧为热源的热喷涂。
  
  
  9热处理
  
  9.1热处理基础术语
  9.1.1
  热处理heattreatment
  采用适当的方式对金属材料或工件进行加热、保温和冷却,以获得预期的金属组织与性能的工艺。
  9.1.2
  相变phasetransformation
  当外界约束条件改变时,引起相的数目或相的性质的变化。
  9.1.3
  临界点criticalpoint
  钢加热和冷却时发生相转变的温度。α铁加热到910℃以上就变成为γ铁,如果再冷却到910℃以下又变为α铁,此转变温度称为A3转变温度,对于碳含量小于0.77%铁碳合金,该转变温度随碳含量的增加而降低;碳含量为0.77%时的转变温度称为A1转变温度;碳含量大于0.77%时的转变温度称为Acm转变温度,该转变温度随碳含量的增加而升高。AC1和AC3代表加热时的转变温度,Ar1和Ar3代表冷却时的转变温度。这些转变温度简称为临界点,或叫临界温度。有时还把AC3称为上临界点。
  9.1.4
  奥氏体化austenizaing
  钢加热到AC1或AC3以上以获得部分或全部奥氏体组织的过程。进行奥氏体化的保温温度和保温时间分别称为奥氏体化温度和奥氏体化时间。奥氏体化大致分为四个阶段,即奥氏体晶核的形成,奥氏体长大直至全部形成奥氏体,残余碳化物的溶解,奥氏体的均匀化。
  
  
  9.1.5
  过冷奥氏体转变图transformationdiagramofsuper-cooledaustenite
  描述钢经奥氏体化后,冷却到相变点以下温度区域时,过冷奥氏体向珠光体、贝氏体、马氏体转变开始和结束与温度(纵坐标)、时间(横坐标)关系的综合动力学曲线图。
  9.1.6
  过冷奥氏体等温转变isothermaltransformationofsuper-cooledaustenite
  把已经奥氏体化的钢急冷至临界点温度(Ar1或Ar3)以下某一温度,然后在该温度保持等温,使奥氏体过冷至该温度并在该温度下发生的转变。
  9.1.7
  过冷奥氏体等温转变曲线isothermaltransformationcurveofsuper-cooledaustenite
  过冷奥氏体在不同温度等温保持时,温度、时间与奥氏体转变产物的类型及其所占百分数(转变开始及转变终止)之间的关系曲线。等温转变曲线纵坐标为温度,横坐标为时间(对数坐标)故又称为时间一温度转变曲线,即TTT曲线(timetemperaturetransformationcurve)。由于等温转变曲线通常呈S形状,故又称为S曲线。
  9.1.8
  过冷奥氏体连续冷却转变曲线continuouscoolingtransformationcurveofsuper-cooledaustenite
  工件奥氏体化后连续冷却过程中,过冷奥氏体开始转变及转变终止的时间、温度及转变产物与冷却速度之间的关系曲线,又称CCT曲线。
  9.1.9
  奥氏体稳定化处理austenitestabilizationtreatment
  使溶质原子从固溶体中以化合物形式充分析出,以减少材料的室温时效硬化倾向,增加尺寸稳定性和抗晶间腐蚀性的热处理方法。通常用于不锈钢的处理。
  9.1.10
  固溶处理solutiontreatment
  将固溶度随温度的升高而增大的合金,加热到单相固溶体相区内的适当温度,保温适当时间,以使原组织中的脱溶(析出)相溶入固溶体。有时人们把此工序与随后的急冷处理合并在一起,统称为固溶处理。
  9.1.11
  交货状态coditionofdelivery
  交货金属材料的最终塑性变形加工或最终热处理的状态。可分为经热处理交货和不经热处理交货两大类。经热处理交货的,按其最终热处理方式又分为退火、正火和高温回火等多种状态;不经热处理交货的,按其最终塑性变形加工方式可分为热轧(锻)、冷轧(拉)等多种状态。
  9.1.12
  整体热处理bulkheattreatment
  对工件整体进行穿透加热的热处理。
  9.1.13
  化学热处理thermo-chemicaltreatment
  将工件置于适当的活性介质中加热、保温,使一种或几种元素渗透入它的表层,以改变其化学成分、组织和性能的热处理。
  
  9.1.14
  表面热处理surfaceheattreatment
  为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。
  9.1.15
  局部热处理localheattreatment;partialheattreatment
  仅对工件的某一部位或几个部位进行热处理的工艺。
  9.1.16
  预备热处理conditioningtreatment
  为调整原始组织,以保证工件最终热处理或(和)切削加工质量,预先进行热处理的工艺。
  9.1.17
  光亮热处理brightheattreatment
  工件在真空炉中加热,使其表面基本不氧化,表面保持光亮的热处理。
  9.1.18
  保护气氛热处理heattreatmentinprotectivegases
  在工件表面不氧化的气氛或惰性气体中进行的热处理。
  9.1.19
  高能束热处理highenergyheattreatment
  利用激光、电子束、等离子弧、感应涡流或火焰等高功率密度能源加热工件的热处理工艺的总称。
  9.1.20
  稳定化处理stabilizingtreatment;stabilizing
  为使工件在长期服役条件下,形状和尺寸变化能保持在规定范围内的热处理。
  9.1.21
  形变热处理thermomechanicaltreatment
  将金属材料的塑性变形和热处理结合,以提高工件力学性能的复合处理工艺。
  9.1.22
  复合热处理duplexheattreatment
  将多种热处理工艺合理组合,以便更有效地改善工件使用性能的复合工艺。
  9.1.23
  恢复热处理restorationheattreatment
  指对长期运行后的热处理件(工件)在尚未发生不可恢复的损伤之前,通过一定的热处理工艺,
  使其组织结构得以改善,使用性能或(和)几何尺寸得以恢复,服役寿命得以延长的热处理技术。
  9.1.24
  预热preheating
  为减少畸变、避免开裂,在工件加热至最终温度前进行的一次或数次阶段性保温的过程。
  9.1.25
  加热速度heatingrate;rateofheating
  在给定温度区间单位时间内工件或介质温度的平均增值。
  9.1.26
  保温holding;soaking
  工件或加热介质在工艺规定温度下恒温保持一定时间的操作。恒温保持的时间和温度分别称保温时间和保温温度。
  9.1.27
  冷却制度coolingschedule
  对工件热处理冷却条件(冷却介质、冷却速度)所作的规定。
  9.1.28
  冷却速度coolingrate
  热处理冷却过程中,在某一指定温度区间或某一温度下,工件温度随时间下降的速率。前者称为平均冷却速度,后者称为瞬时冷却速度。
  9.1.29
  冷却曲线coolingcurve
  显示热处理冷却过程中工件温度随时间变化的曲线。
  9.1.30
  炉冷furnacecooling
  工件在热处理炉中加热保温后,切断炉子能源,使工件随炉冷却的方式。
  9.1.31
  空冷aircooling
  工件在热处理炉中加热保温后,切断炉子能源,使工件在空气中冷却的方式。
  9.2退火
  9.2.1
  退火annealing
  将钢加热到临界点以上30℃~50℃,保温一定时间,然后缓慢冷却(一般随炉冷却)的一种热处
  理操作过程。
  9.2.2
  完全退火fullannealing
  将钢件加热到高于AC3线以上30℃~50℃,完全奥氏体化后缓慢冷却,获得接近平衡组织的一种退火。
  9.2.3
  不完全退火partialannealing;incompleteannealing
  将钢加热到AC1和AC3(亚共析钢)或AC1和ACm(过共析钢)之间的温度,并在此温度下保持一
  定时间,使工件部分奥氏体化后缓慢冷却的一种退火。
  9.2.4
  等温退火isothermalannealing
  将钢加热到AC3或AC1线以上30℃~50℃,并保持一定时间,随后快速冷却到稍低于AC1线的温度(约640℃~680℃),并在此温度下再保持一定时间(约2h~4h),使奥氏体全部转变为珠光体、贝氏体类组织后在空气中冷却的一种退火。
  9.2.5
  球化退火spheroidizingannealing;soheroidizing
  将钢加热到稍高于AC1的温度(约740℃~760℃),随后冷却到稍低于AC1(约680℃~700℃)的温度,再升温到稍高于AC1的温度(约740℃~760℃),随后再冷却到稍低于AC1线的温度(约640℃~680℃),如此重复冷却和加热数次,将工件中碳化物球状化一种退火。
  
  
  9.2.6
  扩散退火diffusionannealing;homogenizing
  将工件加热到高于AC3以上200℃~300℃(约1050℃~1150℃)的温度,并经过长时间保温(约10h~15h),使元素扩散均匀以减轻或消除化学成分及显微组织(枝晶)偏析,达到均匀化目的的一种退火,又称为均匀化退火。
  9.2.7
  去应力退火stressrelieving;stressreliefannealing
  为去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余应力,将钢加热到AC1,线以下某一温度(约500℃~650℃)经保温后随炉缓慢冷却的退火。
  9.2.8
  再结晶recrystallization
  将经冷加工变形后的金属部件加热到适当温度并保温后,金属内形成新晶粒并长大,从而获得没有内应力和加工硬化的组织的软化过程。
  9.2.9
  再结晶退火recrystallizationannealing
  将冷加工变形过的工件加热到再结晶温度以上,经一定时间保温后,通过再结晶使冷变形过程中产生的晶体学缺陷基本消失,重新形成均匀的等轴晶粒,以消除形变强化效应和残余应力的退火。
  9.2.10
  光亮退火brightannealing
  工件在可控气氛、惰性气体或真空中加热,使工件表面基本不被氧化、表面保持光亮的退火工艺。
  9.2.11
  预防白点退火hydrogenreliefannealing
  为防止工件在热变形加工后的冷却过程中,因氢呈气态析出而形成发裂(白点),在形变加工完结后直接进行的退火,其目的是使氢扩散到工件之外。
  9.2.12
  脱氢处理baking;dehydrogenafion
  在工件组织不发生变化的条件下,通过低温加热、保温,使工件内的氢向外扩散进入大气中的退火。
  9.2.13
  中间退火processannealing;intermediateannealing;interstageannealing
  为消除工件形变强化效应,改善塑性,便于实施后续工序而进行的工序间退火。
  9.2.14
  稳定化退火stabilizingannealing
  为使含钛或铌的不锈钢工件中形成碳化钛或碳化铌以代替碳化铬的一种热处理工艺。例如某些奥氏体不锈钢在850℃附近进行稳定化退火,沉淀出TiC、NbC、TaC,以防止耐晶间腐蚀性能降低。
  9.2.15
  晶粒粗化退火coarse-grainedannealing
  将工件加热到比正常退火较高的温度,保持较长时间,使晶粒粗化以改善材料切削加工性能的退火。
  
  9.2.16
  可锻化退火malleablizing
  使成分适宜的白口铸铁中的碳化物分解并形成团絮状石墨的退火。
  9.2.17
  石墨化退火graphitizingtreatment
  为使铸件内莱氏体中的渗碳体或(和)游离渗碳体分解而进行的退火。
  9.2.18
  晶粒细化处理structuralgrainrefining
  以减小金属工件晶粒尺寸或改善组织均匀性为目的而进行的热处理。
  9.3正火
  9.3.1
  正火normalizing
  将钢加热到AC3或ACm以上30℃~50℃,使钢全部奥氏体化,并保温一定时间,随后在空气中冷却,使之得到珠光体型组织的热处理。
  9.3.2
  二段正火two-stepnormalizing
  工件加热奥氏体化后,在静止的空气中冷却到Ar1附近即转入炉中缓慢冷却的正火。
  9.3.3
  重复正火repeatednormalizing
  工件(主要是铸锻件)进行两次或两次以上的正火,也叫两次正火或多重正火。
  9.3.4
  等温正火isothermalnormalizing
  工件加热奥氏体化后,采用强制吹风快冷到珠光体转变区的某一温度,并保温以获得珠光体型组织,然后在空气中冷却的正火。
  9.4淬火
  9.4.1
  淬火quenchhardening;transformationhardening
  将工件加热到临界温度以上保持一定时间,使奥氏体化并均匀化后,放入水、盐水或油中(个别
  材料在空气中)急冷下来以获得马氏体或(和)贝氏体组织的一种热处理操作过程。
  9.4.2
  等温淬火austemprering
  工件加热奥氏体化后,快冷到贝氏体转变温度区间等温保持一段时间,使奥氏体转变为贝氏体的淬火,亦称为贝氏体等温淬火。
  9.4.3
  不完全淬火unfullquenching
  将过共析钢(以及共析钢)加热到AC1~ACm之间的某一温度,保温一定时间,然后保留一定数量未溶颗粒状碳化物,使淬火后钢具有最大的硬度和耐磨性的淬火。
  9.4.4
  分级淬火marquenching
  将工件加热到临界温度以上保持一定时间后,先在稍高于马氏体转变温度的溶盐中冷却,并在此温度停留一段时间使工件温度均匀一致后,在贝氏体转变未开始前,再移入另一种冷却介质(油或空气)中冷却至室温的淬火,又称为马氏体分级淬火。
  9.4.5
  单液淬火singleliquidquenching
  将钢件加热到临界温度以上保持一定时间后,在一种淬火剂中冷却的热处理操作过程。
  9.4.6
  双液淬火interruptedquenching;timedquenching
  工件加热奥氏体化后,先在冷却能力强的淬火剂中冷却,在组织即将发生马氏体转变时,迅速地将钢件转移到冷却能力较弱的淬火剂中冷却(如先水后油)的热处理操作过程。
  9.4.7
  表面淬火surfacehardening
  将工件表面迅速加热到临界温度以上,然后用水或乳状液喷射工件表面的淬火。其中包括感应淬火、火焰淬火、电子束淬火等。
  9.4.8
  电子束淬火electronbeamhardening
  以电子束作为能源,以极快的速度加热工件的自冷淬火。
  9.4.9
  激光淬火laserhardening;lasertransformationhardening
  以激光作为能源,以极快的速度加热工件的自冷淬火。
  9.4.10
  火焰淬火flamehardening;torchhardening
  利用温度高达3200℃左右的氧乙炔火焰快速将工件表面加热到临界温度以上(AC3以上80℃~
  100℃),随后快速冷却,使工件表面淬硬的一种热处理操作过程。
  9.4.11
  感应淬火inductionhardening
  将工件放入铜制的线圈里,然后线圈通以高频交流电(频率为10kHz~500kHz),依靠工件表面
  产生的感应电流使工件表面迅速达到淬火温度,随后快速冷却,仅使工件表面发生马氏体相变,使工件表面淬硬的淬火。
  9.4.12
  电解液淬火electrolytichardening
  将工件预淬硬部位浸入电解液中接阴极,电解液槽接阳极,通电后由于阴极效应而将浸入部位加热奥氏体化,断电后被电解液冷却的淬火。
  9.4.13
  光亮淬火brightquenching;deanhardening
  工件在可控气氛、惰性气体或真空中加热,并在适当的介质中冷却,或盐浴加热后在碱浴中冷却,以获得光亮或光洁金属表面的淬火。
  9.4.14
  形变淬火ausforming
  工件热加工成形后,直接由高温淬冷的淬火。常用的是锻造余热淬火。
  9.4.15
  冷处理subzerotreatment;coldtreatment
  将淬火后的钢件立即置于O℃以下的低温介质(-30℃~-150℃)中继续冷却,然后在空气中恢复
  到室温,使淬火工件的残余奥氏体转变为马氏体的一种热处理操作过程。
  9.4.16
  深冷处理cryogenictreatment
  工件淬火后继续在液氮或液氮蒸气中冷却的工艺。
  9.4.17
  淬硬性hardeningcapacity
  指钢在正常淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度来表征的材料特性,也叫可硬性。
  9.4.18
  淬透性hardenability
  表征钢在淬火时能够得到的淬硬层深度,也称可淬性,是衡量不同钢种接受淬火能力强弱的重要指标。为便于用金相和硬度鉴别,人为规定以50%马氏体处为淬硬层深度。
  9.4.19
  淬硬层quenchhardenedcase;quenchedease
  工件从奥氏体状态急冷硬化的表层。一般以有效淬硬深度来定义。
  9.4.20
  有效淬硬深度effectivehardeningdepth
  从淬硬的工件表面量至规定硬度值(一般为550HV)处的垂直距离。
  9.5回火
  9.5.1
  回火tempering
  将淬火后的工件重新加热到AC1以下的某一温度,并保持一定时间,随后在油中或空气中冷却到室温的一种热处理操作过程。
  9.5.2
  低温回火lowtemperaturetempering;firststagetempering
  将淬火后的工件重新加热到150℃~250℃,并保持一定时间,随后在空气或油中冷却的回火。
  9.5.3
  中温回火mediumtemperaturetempering
  将淬火后的工件重新加热到250℃~500℃,并保持一定时间,随后在空气或油中冷却的回火。
  9.5.4
  高温回火hightemperaturetempering
  将淬火后的工件重新加热到500℃~650℃,并保持一定时间,随后在空气或油中冷却的回火。9.5.5
  自发回火autotempering
  在形成马氏体的快速冷却过程中,因工件Ms点较高而白发地发生回火的现象。低碳钢在淬火冷却时就会发生这种现象。
  9.5.6
  自热回火selftempering
  利用局部或表层淬硬工件内部的余热使淬硬部分回火。
  9.5.7
  多次回火multipletempering
  工件淬硬后进行的两次或两次以上的回火。
  9.5.8
  回火稳定性temperingresistance
  淬硬钢在回火过程中抵抗硬度值下降即抵抗软化的能力,又称抗(或耐)回火性。
  9.6调质
  9.6.1
  调质quenchingandhightemperaturetempering
  将工件加热到比淬火温度高1O℃~30℃,保温后进行淬火,然后在500℃~650℃下进行高温回火,即淬火后随即进行高温回火的一种复合热处理操作过程。
  9.6.2
  二次硬化secondaryhardening
  含一种或数种足够浓度钨、钼、钒、铬等强碳化物形成元素的合金钢,经过淬火和回火处理后,
  当回火温度上升到450℃~650℃,出现材料硬度下降趋势显著减缓或重新上升的现象。这种硬化现象是由于碳化物弥散析出和(或)残留奥氏体转变为马氏体或贝氏体所致。
  9.7时效
  9.7.1
  时效aging
  工件经固溶处理或淬火后,在室温或高于室温的适当温度下保温,以达到沉淀硬化的目的一种热处理操作过程。耐热钢或耐热合金制的高温部件在长期运行过程中,从过饱和固溶体内析出一些强化相质点而使金属的性能(主要是力学性能和蠕变极限等)随时间发生变化的现象,也称时效。它是固溶体脱溶过程或脱溶分解的简称。
  9.7.2
  自然时效naturalaging
  将工件长时期(半年至一年或更长时间)放置在室温或露天条件下发生的时效。
  9.7.3
  人工时效artificialaging
  将钢加热到O℃~200℃并长期保温(10h~20h)后随炉或取出在空气中冷却到室温的时效。
  9.7.4
  应变时效strainaging
  在塑性变形时或变形后钢中的溶质组元(如碳、氮)与位错交互作用而引起钢的性能变化过程。
  性能的变化发生在变形之后的称为静态应变时效,性能的变化与塑性应变同时发生的称为动态应变时效。
  9.7.5
  过时效处理overaging
  工件经固溶处理后,用比能获得最佳力学性能高得多的温度或长得多的时间进行的时效处理。
  9.8表面热处理
  9.8.1
  化学表面热处理chemico-thermaltreatment
  将钢件放在活性介质中,加热到一定温度并保温足够时间后,使钢件的表面层渗入活性元素,以改变钢件表面层的化学成分、组织和性能的一种热处理操作过程。
  
  
  9.8.2
  渗碳carburizing;carburization
  为提高工件表层的含碳量并形成一定的碳含量梯度,将工件在渗碳介质中加热、保温,使碳原子渗入工件表层的化学热处理工艺。
  9.8.3
  气体渗碳gascarburizing
  将工件装入密闭的渗碳炉内,通入气体化学剂或液体化学剂,在高温下分解出活性碳原子渗入到工件表面,以获得高碳表面层的一种渗碳工艺。
  9.8.4
  固体渗碳packcarburizing;solidcarburizing;boxcarburizing;powdercarburizing
  将工件放在填充粒状渗碳剂的密闭渗碳箱中,再将箱放入加热炉中加热到渗碳温度并保持一定时间,使活性碳原子渗入到工件表面的一种渗碳工艺。
  9.8.5
  盐浴渗碳saltbathcarbuzing
  在含有渗碳剂的溶盐中进行的渗碳,也叫液体渗碳。
  9.8.6
  渗碳层carburizedcase;carburizedzone
  渗碳工件含碳量高于原材料的表层。
  9.8.7
  渗碳层深度carburizedcasedepth;carburizeddepth
  由渗碳工件表面向内至碳含量为规定值(一般为0.4%C)处的垂直距离。
  9.8.8
  渗氮nitriding;nitrogencasehardening
  在一定温度和一定介质中使氮原子渗入工件表层的化学热处理工艺,亦称氮化。
  9.8.9
  气体渗氮gasnitriding
  在可提供活性氮原子的气体中进行的渗氮。
  9.8.10
  液体渗氮liquidnitriding
  在含渗氮剂的溶盐中进行的渗氮。
  9.8.11
  氮化物nitride
  氮与金属元素形成的化合物。
  9.8.12
  复合氮化物complexnitride
  两种或多种元素(通常是金属元素)与氮构成的化合物。
  9.8.13
  渗铝aluminizing;calorizing
  为提高工件的抗氧化性能,将铝渗透到工件表层的热处理工艺。
  9.8.14
  碳氮共渗carbonitriding
  在奥氏体状态下,同时将碳和氮渗透入工件表层,并以渗碳为主的化学热处理工艺。
  9.8.15
  液体碳氮共渗cyaniding;liquidcyaniding
  在一定温度下以含氰化物的熔盐为介质进行的碳氮共渗。
  9.8.16
  气体碳氮共渗gascarbonitriding;dryeyaniding
  在含碳和氮的气体介质中进行的碳氮共渗。
  9.8.17
  发蓝处理bluing
  工件在空气-水蒸气或化学药物的溶液中在室温或加热到适当温度,在工件表面形成一层蓝色或黑色氧化膜以改善其耐蚀性和外观的表面处理工艺,也叫发黑。
  9.8.18
  喷砂sandblasting
  以400kPa~600kPa的压缩空气将砂粒高速喷射到工件的表面上,以清除工件表面的氧化皮和粘附物的一种操作。为减少喷砂粉尘对环境和人体的危害,现多采用液体喷砂。
  9.8.19
  喷丸shotpeening
  利用喷丸器或喷嘴将钢丸高速射向工件表面,以清除工件表面的氧化皮和粘附物的一种操作。如果抛射速度足够大,可在工件表面形成压应力,达到提高工件疲劳强度的目的。
10金属的氧化与腐蚀
  
  10.1氧化
  10.1.1
  氧化oxidization
  工件表面的金属原子与介质中的氧、二氧化碳和水蒸气等发生化学反应而生成氧化物的现象。
  10.1.2
  高温氧化hightemperatureoxidization
  在高温下,金属与空气中的氧发生化学反应而生成氧化物的过程。
  10.1.3
  内氧化internaloxidation
  工件加热时,介质中的氧沿工件表层的晶界向内扩散,发生晶界合金元素氧化的过程。
  10.1.4
  抗氧化性oxidationresistance
  金属材料在室温或高温下抵抗氧化的能力。可采用失重法或增重法测定,以试样在氧化过程中,
  在一定时间内金属的重量变化或厚度变化量来表示。钢的抗氧化性一般分为5级。
  10.1.5
  表面氧化层厚度thicknessofoxidelayer
  在被观察的时间间隔内金属表面生成的氧化层(腐蚀产物的薄膜)的平均厚度。
  
  
  10.2腐蚀
  10.2.1
  化学性能chemicalproperties
  金属材料在室温或高温条件下,抵抗各种腐蚀介质对其进行化学侵蚀的能力,主要为耐腐蚀性和抗氧化性。
  10.2.2
  耐腐蚀性corrosionresistence
  金属材料抵抗介质直接腐蚀作用的能力。
  10.2.3
  化学腐蚀chemicalcorrosion
  金属与周围介质直接起化学作用而产生的腐蚀。其特点是腐蚀过程不产生电流,且腐蚀产物沉积在金属表面上。它包括气体腐蚀和金属在非电解质中的腐蚀两种形式。
  10.2.4
  电化学腐蚀electrochemicalcorrosion
  金属与酸、碱、盐等电解质溶液接触时发生作用而引起的腐蚀。其特点是腐蚀过程中有电流产生,腐蚀产物不覆盖在作为阳极的金属表面上,而是在距离阳极金属的一定距离处。
  10.2.5
  均匀腐蚀uniformcorrosion
  在金属材料的整个暴露表面或大面积上均匀地发生化学或电化学反应,金属宏观变薄的现象,被称为均匀腐蚀。又叫一般腐蚀或连续腐蚀。
  10.2.6
  局部腐蚀localcorrosion
  与环境接触的金属表面局限于某些区域发生的腐蚀。按腐蚀形态可分为点腐蚀、缝隙腐蚀、晶间腐蚀、电偶腐蚀、选择性腐蚀、应力腐蚀等。
  10.2.7
  点腐蚀pointcorrosion
  金属的大部分表面不发生腐蚀或腐蚀很轻微,而局部被腐蚀成为一些小而深的点孔的腐蚀现象,
  又称为孔蚀。它常在静止的介质中发生,且通常沿重力方向发展,其危害较大。
  10.2.8
  缝隙腐蚀corrosionataseam
  当构件具有缝隙或覆盖沉积物表面暴露在腐蚀介质中时,在缝隙局部范围内发生的腐蚀。如金属铆接处、螺栓连接处和金属表面沉积物下面的腐蚀等。
  10.2.9
  电偶腐蚀galvaniccorrosion
  当两种不同金属或合金在介质中相偶接时,由于腐蚀电池的作用,电位较负的金属腐蚀速度加大,而电位较正的金属受到了保护。这种腐蚀被称为电偶腐蚀,又称接触腐蚀或异种金属腐蚀。
  10.2.10
  晶间腐蚀intergranularcorrosion
  金属材料在某些腐蚀介质(如NaOH)中,沿着或紧靠金属晶粒边界发生腐蚀的现象。发生晶间
  腐蚀后,金属的外形尺寸几乎不变,大多数仍能保持金属光泽,但金属的强度和延性显著下降,其危害很大。
  10.2.11
  选择性腐蚀selectivecorrosion
  合金中某些组成元素或某组织在腐蚀过程中不按其在合金中所占比例进行反应所发生的合金腐
  蚀。有色金属合金、铸铁及不锈钢等均可能发生选择性腐蚀。
  10.2.12
  热腐蚀hotattack
  金属或它的氧化物与含有微量硫及其他一些杂质的烟气、燃气相接触,在其表面形成一层溶盐灰分的膜,在氧化气氛中引起金属的加速氧化,称为金属的热腐蚀。
  10.2.13
  氢脆hydrogenembrittlement
  由于氢的存在使材料产生不可逆损伤、塑性下降,以及低应力下的滞后断裂,总称为氢脆,也称为氢损伤。
  10.2.14
  应力腐蚀stresscorrosion
  金属在持久拉应力(包括外加载荷、热应力及冷加工、热加工或焊接后的残余应力等)和特定的
  腐蚀介质联合作用下出现的腐蚀现象。由应力腐蚀导致构件的脆性断裂称为应力腐蚀断裂。
  10.2.15
  大气腐蚀atmosphericcorrosion
  在大气环境下,通过金属表面液膜的扩散发生氧化极化的电化学腐蚀为大气腐蚀。按金属表面电解液膜层的存在和状态不同可分为干大气腐蚀、潮大气腐蚀和湿大气腐蚀三类。
  10.2.16
  水介质中腐蚀corrosioninaqueousenvironment
  金属材料在水介质中发生的腐蚀,属电化学腐蚀,通常受阴极过程控制。
  10.2.17
  苛性脆化causticembrittlement
  锅炉用金属,由于局部区域出现碱性介质(如氢氧化钠溶液)的浓缩,使之在拉应力区产生沿晶-穿晶型腐蚀裂纹的现象,但金属组织并未发生变化。苛性脆化也称为碱致脆化。
  10.2.18
  冲蚀erosion-corrosion
  由冲刷和腐蚀联合作用产生的材料破坏过程。即在腐蚀流体高速作用下,金属以溶解的离子状态脱离表面或生成固态腐蚀产物,然后受机械冲刷而脱离金属表面的过程。
  10.2.19
  腐蚀速率corrosionrate
  指将试样置于试验介质中,经一定时间后,通过测量其质量变化可求得材料的全面腐蚀(即均匀
  腐蚀)速度。可以用单位时间、单位面积上的质量损失来表示,也可以用年腐蚀深度来表示。
  10.2.20
  空化腐蚀cavitationcorrosion
  由腐蚀和气泡联合作用而产生的材料破坏过程,又叫空泡腐蚀。由于气泡在压强高的区域破裂时产生很大的冲击压强,使气泡破裂处的金属表面膜破坏,发生塑性变形或使金属脆性开裂。
  
  
  10.2.21
  脱锌dezincification
  凝汽器铜管在使用过程中,接触冷却水的内壁,锌优先被腐蚀溶于水中,使铜管表面遗留下海棉状纯铜的过程。可分为均匀层状脱锌、点状脱锌和晶界脱锌三种。
  
  
  11金属检验与分析技术
  
  11.1金相检验与化学分析
  11.1.1
  金相检验metallographicexamination
  泛指对金属的宏观组织和微观组织进行的检验。检验方法见GB/T13298。
  11.1.2
  光学金相显微分析opticalmicroscopicstructureinspectio
  用光学显微镜观察、鉴别和分析金属的显微组织及显微缺陷的方法。显微组织包括相的组成、数量、形态、大小和分布。显微缺陷包括各种非金属夹杂物、裂纹、显微孔洞、珠光体球化程度、石墨化程度、脱碳、过烧、过热等。
  11.1.3
  金相复型技术metallurgicreplica
  将预制的复型材料与经过研磨、抛光和浸蚀并显示出显微组织的金属表面贴合的方法取得部件金属组织形貌的复型(负面)的技术。复型材料有有机玻璃和醋酸纤维纸(AC纸)等。检验方法见DL/T
  652。
  11.1.4
  定量金相技术quantitativemetallographytechnique
  在金相分析中对显微组织的特征参数作几何学的定量测定与分析的技术。
  11.1.5
  金属电子显微技术electronmicroscopicaltechniqueofmetal
  利用电子光学显微仪器研究金属的方法。常用的仪器有透射电子显微镜、扫描电子显微镜和扫描透射电子显微镜等。
  11.1.6
  透射电子显微术transmissionelectronmicroscopy
  在透射电子显微镜中,利用高能电子束通过试样时产生的各种信息,研究试样物质微观结构的分析技术。
  11.1.7
  扫描电子显微术scanningelectronmicroscopy
  以能量为1keV~30keV的电子束作为微束激发源(又称为一次束),以光栅状扫描方式照射到被
  分析试样的表面上,分析入射电子和试样表面物质的相互作用所产生的各种信息,从而研究试样表面微区形貌、成分和结晶学性质的技术。主要设备为扫描电镜。
  11.1.8
  俄歇电子能谱Augerelectronspectroscopy
  利用俄歇电子能谱仪,将聚集的数千电子伏一次电子束碰撞试样表面的原子,使原子的内层电子电离而留下空位,如果一个电子填充初态空位时另一电子脱离原子发射出去,则发射的电子就是俄歇电子。探测俄歇电子的数量和能量,从而确定样品表面元素种类的技术。
  11.1.9
  电子微探针分析electronmicroprobeanalysis
  利用入射电子轰击试样表面产生的特征X射线,非破坏性地分析固体表面微区域(约1μm)内化
  学组成的方法。主要设备为电子探针仪。
  11.1.10
  金属化学成分分析chemicalcompositionanalysisofmetal
  查明金属材料化学成分的试验方法。鉴定金属由哪些元素所组成的试验方法为定性分析,测定各组分间量的关系的试验方法为定量分析。
  11.1.11
  金属碳化物分析carbideanalysis
  对钢中碳化物相的组成、数量、结构、形态、大小、分布状态及合金元素在相间的分布进行分析的试验方法,属于相分析方法。分析方法见DL/T818。
  11.1.12
  合金相分析alloyphasesanalysis
  对合金中合金相的数量、结构、组成、大小、形态、分布及合金元素在相间的分配进行分析的试验方法。
  11.1.13
  X射线衍射技术X-raydiffractiontechniques
  用X射线照射晶体产生衍射从而测定晶体结构的技术。在电力工业中,主要用于金属碳化物、腐蚀产物、水中沉淀物、水垢及灰粉的物相分析和金属残余应力测量等。
  11.2失效分析
  11.2.1
  断口分析fractography
  通过对部件失效断口宏观和微观特征形貌的分析,从而确定断裂的性质和断裂原因,以及研究断裂机理的技术。
  11.2.2
  脆性断口brittlefracturesurface
  出现大量晶粒开裂或晶界破坏的有光泽断口,也称为结晶断口。
  11.2.3
  韧性断口ductilefracturesurface
  出现纤维状剪切破坏的无光泽断口。
  11.2.4
  正断normalfracture
  指断裂面与最大拉应力方向垂直的断裂。包括脆性解理断裂和塑性等轴韧窝状断裂。
  11.2.5
  切断shearfracture
  指断裂面与最大拉应力方向呈450交角的断裂,即断裂沿最大切应力方向进行。切断断口呈灰色的刀刃状,一般发生在形变约束较小的情况。
  
  11.2.6
  解理断裂cleavagerupture
  在正应力作用下,由于原子间结合键的破坏而造成的穿晶断裂。解理可沿解理面、滑移面或孪晶面进行。断面平滑而光亮,断裂前变形极少,属脆性断裂。其断面存在有解理台阶、河流花样、舌状花样或鱼骨状花样等特征。
  11.2.7
  准解理断裂quasi-cleavagerupture
  与解理断裂相类似,断裂面具有局部塑性变形,其断裂包含显微孔洞的聚集和解理的混合机理。
  其断面的形貌特点是:大量短而弯曲的撕裂棱从中央向四周放射,断面稍有凹凸变形和二次裂纹。
  11.2.8
  脆性断裂brittlefracture
  宏观上,断裂前几乎不发生显著的塑性变形(一般不大于1%),断口齐平,断裂构件的两边裂口对接时,裂口吻合完好,断面上常呈现出冰糖状结晶颗粒,微观上没有明显的塑性流变痕迹的断裂。其断口分为两种:与最大拉应力方向垂直的平断口和与最大拉应力方向呈450交角的斜断口。断裂时的工作应力往往低于材料的屈服应力。
  11.2.9
  塑性断裂plasticfracture
  宏观上,断裂前产生显著的塑性变形,构件尺寸有明显变化,断面对接时,裂口不能很好地吻合,断面上常呈现出暗灰色的纤维状特征,微观上有明显的塑性流变痕迹的断裂。断裂时的工作应力往往超过材料的屈服强度极限。
  11.2.10
  穿晶断裂transgranularfracture
  裂纹穿过组织的晶粒内部或相的内部所发生的断裂。包括一般的塑性断裂、解理断裂、大气中的疲劳断裂等。
  11.2.11
  沿晶断裂intergranularfracture
  裂纹沿着组织的晶界或相界扩展所发生的断裂。包括材料的回火脆性、相析出脆性、应力腐蚀开裂等。
  11.2.12
  疲劳断裂fatiguerupture
  金属构件在变动载荷作用下,经过一定循环周次后所发生的断裂。
  11.2.13
  应力腐蚀断裂stresscorrosionrupture
  金属构件在静载拉应力和特定的腐蚀环境共同作用下所导致的脆性断裂。
  11.2.14
  过载断裂overloadrupture
  外加载荷超过金属构件危险截面所能承受的极限应力时所发生的断裂。
  11.2.15
  蠕变断裂creeprupture
  材料在一定的温度和载荷共同作用下,由蠕变变形而导致的断裂。
  
  11.2.16
  氢脆断裂hydrogenembrittlementrupture
  由于氢而导致金属材料在低应力静载荷下的脆性断裂。
  11.3力学性能与工艺试验
  11.3.1
  拉伸试验tensiletesting
  用静拉伸力对试样轴向拉伸,测量力和相应的伸长,一般拉至断裂,测定其拉伸力学性能的试验。试验方法见GB/T228和GB/T4338。
  11.3.2
  压缩试验compressivetesting
  用静压缩力对试样轴向压缩,在试样不发生屈曲下测量力和相应的变形(缩短),测定其压缩力
  学性能的试验。试验方法见GB/T7314。
  11.3.3
  扭转试验torsiontesting
  对试样两端施加静扭矩,测量扭矩和相应的扭角,一般扭至断裂,测定其扭转力学性能的试验。
  试验方法见GB/T10128。
  11.3.4
  剪切试验sheartesting
  用静拉伸或压缩力,通过相应的剪切器具,使垂直于试样纵轴的一个横截面受剪,或相距有限的两个横截面对称受剪,测定其力学性能的试验。
  11.3.5
  布氏硬度试验Brinellhardnesstest
  用一定直径的球体(钢球或硬质合金球),以相应的试验力压入试样表面,经规定保持时间后卸
  除试验力,用测量的表面压痕直径计算硬度值的一种压痕硬度试验。布氏硬度用符号HB或HBS(用
  钢球压头)或HBW(用硬质合金球压头)表示。试验方法见GB/T231.1、GB/T231.2、GB/T231.3。
  11.3.6
  洛氏硬度试验Rockwellhardnesstest
  在初始试验力及总试验力先后作用下,将压头(金刚石圆锥或钢球)压入试样表面,经规定保持
  时间后,卸除主试验力,用测量的残余压痕深度增量计算硬度值的一种压痕硬度试验。洛氏硬度用符号HR表示,HR前面为硬度数值,后面为所使用的标尺。例如:50HRC表示用C标尺测定的洛氏硬
  度值为50。试验方法见GB/T230。
  11.3.7
  表面洛氏硬度试验Rockwellsuperficialhardnesstest
  初始试验力为29N,总试验力为147N、294N或441N的洛氏硬度试验。试验方法见GB/T1818。
  11.3.8
  维氏硬度试验Vickershardnesstest
  将相对面夹角为1360的正四棱锥体金刚石压头,以选定的试验力(49.03N~980.7N)压入试样表面,经规定保持时间后卸除试验力,用测量的压痕对角线长度计算硬度值的一种压痕硬度试验。维氏硬度用符号HV表示。试验方法见GB/T4340.1、GB/T4340.2和GB/T4340.3。
  
  
  11.3.9
  小负荷维氏硬度试验lowloadVickershardnesstest
  试验力范围在1.961N~49.03N的维氏硬度试验。试验方法见GB/T4340.1、GB/T4340.2和GB/T4340.3。
  11.3.10
  显微维氏硬度试验Vickersmicrohardnesstest
  试验力在1.961N以下的维氏硬度试验。试验方法见GB/T4342。
  11.3.11
  努氏硬度试验Knoophardnesstest
  将两相对棱边夹角分别为172030′和13000′的菱形锥体金刚石压头以规定的试验力压入试验表面,经规定保持时间后卸除试验力,用测量的压痕对角线长度计算硬度值的一种压痕硬度试验。
  11.3.12
  肖氏硬度试验Shorehardnesstest
  将规定重量及形状的金刚石或钢球压头,从一定高度落到试样表面上,用测量的冲头回跳高度计算硬度的一种动态力硬度试验。肖氏硬度用符号HS表示。试验方法见GB/T4341。
  11.3.13
  里氏硬度试验Leebhardnesstest
  用规定质量的冲击体在弹力作用下以一定速度冲击试样表面,用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度值的一种方法。试验方法见GB/T17394。
  11.3.14
  夏比(V型缺口)冲击试验charpyimpacttest(V-notch)
  用规定高度和重量的摆锤对处于简支梁状态的标准V型缺口试样进行一次性打击,测量试样折断时冲击吸收功的试验。试验方法见GB/T229。
  11.3.15
  夏比(U型缺口)冲击试验charpyimpacttest(U-notch)
  用规定高度和重量的摆锤对处于简支梁状态的标准U型缺口试样进行一次性打击,测量试样折断时冲击吸收功的试验。试验方法见GB/T229。
  11.3.16
  艾氏冲击试验lzodimpacttest
  用规定高度和重量的摆锤对处于悬臂梁状态的标准缺口试样进行一次性打击,测量试样折断时冲击吸收功的试验。试验方法见GB/T4158。
  11.3.17
  落锤试验drop-weighttest
  将规定高度和重量的重锤自由落体一次冲击处于简支梁状态的预制裂纹的标准试样,测量无塑性转变温度的试验。试验方法见GB/T8363。
  11.3.18
  蠕变试验creeptest
  利用一组试样,在规定温度和不同试验力作用下,测量试样蠕变变形量随时间变化的关系,进而测定材料的蠕变极限的试验。试验方法见GB/T2039。
  
  
  11.3.19
  持久强度试验stressrupturetest
  利用一组试样,在规定温度及恒定试验力作用下,测定试样至断裂的持续时间,然后用统计的方法获得材料持久强度极限的试验。试验方法见GB/T2039。
  11.3.20
  应力松弛试验stressrelaxationtest
  利用一组试样,在规定温度下,保持试样初始变形或位移恒定,测定试样上应力随时间下降关系的试验。试验方法见GB/T10120。
  11.3.21
  断裂韧度试验fracturetoughnesstesting
  利用一组试样,测定带裂纹试样抵抗裂纹失稳扩展能力,即断裂韧性的力学性能试验方法。表征材料断裂韧性的指标有KIC、JIC、δC等。试验方法见GB/T4161、GB/T2038、GB/T2358。
  11.3.22
  疲劳裂纹扩展速率试验fatiguecrackgrowthratetesting
  利用一组试样,在循环加载条件下测定带裂纹试样裂纹扩展的速度。试验方法见GB6398。11.3.23
  疲劳试验fatiguetest
  利用一组试样,在交变载荷作用下直至试样断裂,从而测定材料的疲劳曲线和疲劳极限的力学性能试验。以交变载荷类型的不同有旋转弯曲疲劳试验、拉压疲劳试验和扭转疲劳试验等;以交变应力或应变有应力疲劳或应变疲劳。试验方法见GB/T2107、GB/T3075、GB/T4337、GB/T6399。11.3.24
  金属弯曲试验bendtestofmetals
  用规定直径尺寸的弯心将试样弯曲至规定程度,检验金属材料承受弯曲塑性变形的能力并显示其缺陷的试验。试验方法见GB/T232。
  11.3.25
  金属管弯曲试验bendtestontubesofmetals
  在带槽弯心上将试样弯曲至规定程度,检验金属管承受弯曲塑性变形的能力并显示其缺陷的试验。试验方法见GB/T244。
  11.3.26
  金属不淬硬弯曲试验bendtestofnon-quench-hardeningmetals
  检验金属材料接近于淬火温度骤冷后承受规定弯曲塑性变形的能力并显示其缺陷的试验。
  11.3.27
  金属型材展平弯曲试验fatteningandbendtestonsectionsofmetals
  用锤将型材角部击成平面后进行弯曲,检验金属型材在室温或热状态下承受展平弯曲塑性变形的能力并显示其缺陷的试验。
  11.3.28
  金属反复弯曲试验reversebendofmetals
  将试样一端夹紧,在规定半径的圆柱形表面上进行900的重复反向弯曲,检验金属(及覆盖层)
  的耐反复弯曲能力并显示其缺陷的试验。试验方法见GB/T235。
  
  
  11.3.29
  金属线材扭转试验torsiontestofmetallicwire
  将试样两端夹紧,一端夹头围绕试样轴线旋转,检验金属线材在单向或交变方向扭转时承受塑性变形的能力并显示材料的均匀性、表面和内部缺陷的试验。试验方法见GB/T239。
  11.3.30
  金属管压扁试验flatteningtestontubesofmetals
  将金属管压扁至规定尺寸,检验其塑性变形的能力并显示其缺陷的试验。试验方法见GB/T246。
  11.3.31
  金属管卷边试验flangingtestontubesofmetals
  将规定形状的顶心压入金属管一端,使管壁均匀卷至规定尺寸,检验管壁承受外卷塑性变形的能力并显示其缺陷的试验。
  11.3.32
  金属管扩口试验flaringtestontubesofmetals
  将规定锥度的顶心压入金属管一端,使直径均匀地扩张至规定尺寸,检验金属管径向扩张塑性变形的能力并显示其缺陷的试验。试验方法见GB/T242。
  11.3.33
  金属管缩口试验reductiontestontubesofmetals
  将金属管压入规定锥度的座套中,使直径均匀减缩至规定尺寸,检验金属管径向压缩塑性变形的能力并显示其缺陷的试验。
  11.3.34
  滚动磨损试验rollweartest
  两圆环形试样作滚动接触摩擦并承受规定压力,经规定转数或时间后测定试样耐磨性和摩擦系数的试验。
  11.3.35
  金属管液压试验hydrostaticpressuretestontubesofmetals
  用水或规定液体充满金属管,在一定时间内承受规定压力,检验金属管质量及强度,并显示其缺陷的试验。
  11.3.36
  气密性检验airtighttest
  将压缩空气(或氨、氟利昂、氦、卤素气体等)压入焊接容器,利用容器内外气体的压力差检查
  有无泄漏的试验法。
  11.3.37
  耐压检验pressuretest
  将水、油、气等充入容器内徐徐加压,以检查其泄漏、耐压、破坏等的试验。
  11.4无损检测
  11.4.1
  无损检测non-destructivetesting
  不破坏被检查材料或成品的性能和完整性而检测其缺陷的方法。
  11.4.2
  宏观检测visualtesting
  用目视或5倍~10倍的放大镜或光纤内窥镜检查工程部件表面缺陷和完整性的方法。
  11.4.3
  超声检测ultrasonicflawdetection
  超声波在被检材料中传播时,根据材料的缺陷所显示的声学性质对超声波传播的影响来探测其缺陷的方法。
  11.4.4
  磁粉检测magneticparticletesting
  利用漏磁和合适的检验介质发现试件表面和近表面的不连续性的无损检测方法,也叫磁粉探
  伤。
  11.4.5
  渗透检测penetrantflawdetection
  通过施加渗透剂,然后用洗净剂除去多余部分,如有必要,施加显像剂以得到零件上开口于表面的某些缺陷的指示。也叫渗透探伤。
  11.4.6
  涡流检测eddycurrenttesting
  以交流电磁线圈在金属部件表面感应产生涡流来检测金属部件表面及近表面缺陷的无损检测方
  法。
  11.4.7
  射线透照检查radiographicinspection
  利用X射线或核辐射以探测金属部件中的缺陷,并在记录介质上显示其图像。其方法有X射线荧光屏检查、γ射线透照术、电子辐射透照术、中子射线透照术等。
  11.4.8
  X射线荧光屏检查fluoroscopy
  在可透射物体的致电离辐射照射下,在荧光屏上用目视法检查物体的图像。
  11.4.9
  γ射线透照术Gamma-rayradiography
  利用γ射线源进行射线透照的技术。
  11.4.10
  电子辐射透照术electronradiography
  一束电子穿过材料在胶片上留下记录的一种方法;或者是,一束X射线入射到材料上,用胶片记录从材料表面所发射出的电子的方法。
  11.4.11
  中子射线透照术neutronradiography
  通过物体对中子束有选择性的衰减,得到物体内部细节图像的一种方法。
  11.4.12
  红外线检测infra-redinspection
  利用测量红外辐射的方法,检测部件表面温度或温度分布,以确定部件缺陷的一种检测技术。
  11.4.13
  声发射检测acousticemissioninspection
  固体材料或部件因受力发生塑性变形至断裂的过程中,储存的应变能断续的释放发射出瞬态弹性波,通过接收和分析材料的声发射信号以检测部件的破坏过程。

感动 同情 无聊 愤怒 搞笑 难过 高兴 路过

责任编辑 :tina710 (易 安 网 版 权 所 有 ,未 经 授 权 禁 止 使 用 ,不 能 转 载 ! )

分享或转发本文