主题颜色

易燃易爆液体储罐区火灾爆炸事故安全评价

1 概述
  易燃易爆液体作为原料或产品普遍存在于化工生产过程中,因此,大部分化工企业普遍分布着或大或小的易燃易爆液体储罐区。如石化生产企业的石脑油乙烷甲醇乙醇汽油丙酮等储罐区;储存企业的石油库危险化学品仓库等储罐区。由于易燃易爆液体储存构成危险源的临界量仅20t,因此上述储罐区一般都属于重大危险源。这些场所,事故发生的风险值高,波及面广,事故后果严重,必须重点进行安全评价。
  大量事故案例表明,火灾爆炸事故是易燃易爆液体储罐区多发事故,究其原因,主要是易燃易爆液体本身固有的危险性以及储存设施不健全和安全管理不利造成的。
  对一个系统的安全评价,要想使得出的结论准确、清晰、全面,就必须选择恰当的评价方法。目前已开发出数十种安全评价方法,由于每种评价方法均具有不同的特点和不同的适用范围,因此,如果评价方法选择不当,就可能得出不切合实际的评价结论。
  对一种可能发生的事故不但要知道其后果,而且要查明引起事故发生的直接原因,只有这样,对其评价才有意义。因此,针对易燃易爆液体储罐区的火灾爆炸事故,应从事故后果的严重程度、事故发生的概率以及导致事故发生的直接原因三方面入手进行评价,得出的结论才算完整。对易燃易爆液体储罐区的火灾爆炸事故进行定量评价,要综合各种评价方法的特点和实用性,如采用美国道化学公司的火灾爆炸危险指数法,可以评价出火灾爆炸事故发生后的影响范围,即暴露区域面积,并可以计算出暴露区域的财产和停工损失;还可以采用池火灾伤害数学模型分析法,从另一角度评价事故发生后其热辐射强度对周围设施、人员的伤害程度。采用这2种评价方法同时进行定量评价,可以从不同角度评判事故发生后的严重程度,并可以相互印证其评价结果的准确性。利用道化学和池火灾伤害数学模型分析法定量分析事故的影响范围和伤害程度后,还要寻找一种方法,评价导致事故发生的直接原因和求出事故发生的概率,事故树分析法最具上述特点。因此,可利用事故树分析法评价分析易燃易爆液体储罐区的火灾爆炸事故原因。通过采用上述3种安全评价方法,对易燃易爆液体储罐区火灾爆炸事故从不同角度进行评价,基本可以得出全面、清晰、准确的评价结论。
  下面以某沥青厂汽油储罐区的安全评价为例,采用以上3种方法对易燃易爆液体储罐区的火灾爆炸事故进行分析。
  2 实例分析
  某沥青厂轻质油罐区防火堤105m、宽64m防火堤内有83000m3储罐。其中2汽油储罐,6个柴油储罐,防火堤中间的隔堤将2汽油储罐和2个柴油储罐分割为一个区域。汽油泄漏易引起火灾爆炸事故,而且事故后果很严重,本文以汽油泄漏引起的火灾爆炸事故进行安全评价。
  2.1 火灾爆炸危险指数评价法
  采用道化学公司(DOW火灾爆炸危险指数评价法(第7版),确定火灾爆炸的影响范围。下面所有参数取值均来自该方法对应的参数取值表,由于篇幅受限,表格略。
物质系数MF的选取:查物质系数和特性表,MF16
   一般工艺危险系数F1的选取:包括基本系数、防热反应、吸热反应、物料处理与输送、封闭单元或室内单元、通道以及排放和泄漏控制”7个取值项。对应的取值分别为:1000.850.4500.50F17个取值之和,F12.80
   特殊工艺危险系数F2的选取:包括基本系数、毒性物质、负压操作、粉尘爆炸、压力释放等13个取值项。就汽油储罐各项取值为:10.200.5000.201.20.10.1000F213个取值项之和,F23.30
   单元危险系数F3的计算:单元危险系数F3的值为一般工艺危险系数F1与特殊工艺危险系数F2的乘积。计算F39.24
   火灾爆炸指数F&EI的计算:火灾爆炸危险指数F&EI是工艺单元危险系数F3和物质系数MF的乘积。计算F&EI147.84。查该方法相应的火灾爆炸指数与危险等级的对应关系表,得出,汽油储罐一旦发生火灾爆炸事故,其危险等级属于很大。
   爆炸影响半径计算:爆炸半径计算公式为:
  R=0.256×F&EI=0.256×147.84=37.84m
   爆炸影响面积计算:爆炸影响面积
  S=3.14R2=4498.43m2
  由于事故影响范围内的财产价值估计有困难,所以一般只评价到影响面积即可。
   安全措施补偿:安全措施可以分为3类,分别为工艺控制、物质隔离和防火措施。查安全措施补偿系数表,经过计算,采取补偿措施后,汽油储罐发生火灾爆炸事故的损失可以降低到未采取安全措施损失的70%。
2.2 火灾伤害数学模型分析法
  采用池火灾伤害数学模型分析法进一步确定影响程度,被评价的汽油罐区防火堤105m、宽32m、高约1.2m。罐体一旦破裂或操作失误外溢,液体将立即沿着地面扩散,将一直流到防火堤边,形成液池。遇明火将形成池火。
   池火火焰高度计算
  h=84rdm/dtρ02gr12
  式中:h——火焰高度,m
  r——液池当量园半径,
  r=105×32/3.140.532.71m
  ρ0——周围空气密度,ρ01.293kg/m3;(标准状态);
  g——重力加速度,9.8m/s2
  dm/dt——燃烧速度,dm/dt0.086kg/m2·s(查可然液体燃烧速度表)。
  经计算,池火燃烧火焰高度h77.74m
   池火燃烧时放出的总热辐射通量
  Q=πr2+2πrhdmdtηhc/72 dm
  dt0.6+1
  式中:Q——总热辐射通量,W
  η——效率因子,可取0.13~0.35
  hc——液体燃烧热,查物质系数和特性表,汽油燃烧热hc43.7×106J
  计算后得Q276291.5kW
   目标入射热辐射强度
  距离池中心某一距离(x)处的入射热辐射强度为:
  I=Qtc4πx2
  式中:I——热辐射强度,W/m2
   Q——总热辐射通量,W
     tc——热传导系数,取值为1
     x——目标点到液池中心距离,m
  汽油罐区东北25m处为加压泵房系统,西北100m处为厂区锅炉房,其余邻面无设施,因此取x25100m计算I值。为了进一步查明其影响范围程度以及验证前述道化学方法评价结论的准确性,再取x=3037.854555657585100计算其对应的I值。计算结果见表1
  表1 不同距离下热辐射强度模拟值
  距离(m)热辐射强度(kW/m2
  2535.2
  3024.4
  37.515.4
  4510.9
  557.3
  655.2
  753.9
  853.0
  1002.2

结构重要度分析
  根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和1个条件事件的结构重要度系数。计算结果如下:
  由于条件事件a存在于每一个割集中,因此其结构重要度系数IФ(a)最大;
  事件X8X9X10X11X1253阶割集和14阶割集中的事件,其结构重要度系数IФ(8)IФ(9)IФ(10)IФ(11)IФ(12)相等;
  事件X1X2X3 X4 X553阶割集中的事件,其结构重要度系数IФ(1)
  IФ(2)IФ(3)IФ(4)IФ(5)相等;
  事件X6X754阶割集中的事件,其结构重要度系数IФ(6)IФ(7)相等;
  由此得出结构重要度顺序:
  IФ(a)>IФ(8)=IФ(9)IФ(10)=IФ(11)=IФ(12)>IФ(1)=IФ(2)=IФ(3)=IФ(4)
  =IФ(5) >IФ(6)=IФ(7)
  由图1事故树分析可知,火源与达到爆炸极限的混合油气构成了油罐区燃爆事故发生的要素。条件事件a(达到爆炸极限浓度)结构重要系数最大,是燃爆事故发生的最重要条件,这就要求采取针对措施,如在储罐附近安装气体报警装置,对混合气浓度进行监测,一旦接近危险浓度即行报警,使管理人员立刻采取预防措施,可避免事故发生。构成油品泄漏的基本事件结构重要度次之,由此可知,油罐的密封是否良好在防止燃爆事故发生中占据着十分重要的地位。另外,加强油罐区安全管理,严禁吸烟和动用明火,防止铁器撞击,防止产生静电火花以及罐区内电气设备要符合防火防爆要求等,也是防止燃爆事故发生的必要条件。
  3 结论
  对于重大事故的安全评价,如果只采用一种方法来分析,往往带有局限性和片面性,如果结合评价方法的特点、使用范围和应用条件,对危险因素从不同角度,采用不同的评价方法进行评价分析,评价结论比较完整和全面。通过不同的评价方法进行评价,即可以对事故的风险进行定量评估,又能定性的找出导致事故发生的直接原因事件,从而有针对性的制定安全对策措施,最大限度地避免事故发生。
   以上通过汽油储罐区的火灾爆炸事故案例,对易燃易爆液体储罐区火灾爆炸事故的评价方法选择和评价过程的介绍可以看出,对于易燃易爆液体储罐区火灾爆炸事故的评价,首先应采用美国道化学公司的火灾爆炸危险指数法,评价出火灾爆炸事故的影响范围;其次利用池火灾伤害数学模型分析法,评价出事故对周围设施和人员的损伤程度,同时还可以对前述道化学方法的评价结论进行验证;最后建立火灾爆炸事故树,分析该事故发生的概率(必须有基本原因事件发生的记录或经验概率值)和找出导致火灾爆炸事故发生的基本原因事件,并求出各原因事件的主次作用,为安全对策措施的轻重缓急排序提供科学依据。
感动 同情 无聊 愤怒 搞笑 难过 高兴 路过

责任编辑 :小洋葱 (易 安 网 版 权 所 有 ,未 经 授 权 禁 止 使 用 ,不 能 转 载 ! )

分享按钮